People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kouhia, Reijo
Tampere University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Bonding of ceramics to silver-coated titanium—A combined theoretical and experimental study
- 2023Numerical Modelling of Thermal Weakening Effect on Compressive Strength of Concrete
- 2023Machine Learning Composite-Nanoparticle-Enriched Lubricant Oil Development for Improved Frictional Performance—An Experimentcitations
- 2022Strength of Ice in Brittle Regime—Multiscale Modelling Approachcitations
- 2022Modelling the effect of concrete cement composition on its strength and failure behaviorcitations
- 2019Implementation of a continuum damage model for creep fracture and fatigue analyses to ANSYS
- 2017On the Modelling of Creep Fracture and Fatigue
- 2017Metallien virumismurron ja virumisväsymisen mallintaminen
- 2016A continuum damage model for creep fracture and fatigue analysescitations
- 2016Modeling and experimental verification of magneto‐mechanical energy harvesting device based on construction steel
Places of action
Organizations | Location | People |
---|
document
Modeling and experimental verification of magneto‐mechanical energy harvesting device based on construction steel
Abstract
The concept of energy harvesting through ambient vibrations has seen significant rise in academic interest as it allows wireless or portable systems to be autonomous and self-sufficient in terms of energy requirement. Ambient sources of vibration involve vibrations from bridges, skyscrapers, rail tracks, machines, motors, shafts and body of cars or ships etc. Thus, the harvested energy depends on the nature and amplitude of vibration available.<br/>The concept in discussion focuses on magneto-strictive energy harvesting technique due to its higher energy density as compared to piezoelectric. The<br/>project aims at the development of a stress dependent reluctance network model to determine the effect of mechanical stress on magnetization curves and for simulating the energy conversion process, as well as measurement of the power density obtainable from the test material. Construction steel has been utilized for energy harvesting application because of its practical applications in bridges, buildings and rail tracks etc.