Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cochard, Hervé

  • Google
  • 2
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014Hydraulic Signals induced by bending in artificial and natural branches : link with plant mechanoperception and long-distance signaling in treescitations
  • 2013Biophysical and molecular determinants of vulnerability to cavitation in young poplarscitations

Places of action

Chart of shared publication
Moulia, Bruno
1 / 6 shared
Louf, Jean-François
1 / 2 shared
Badel, Eric
2 / 13 shared
Forterre, Yoël
1 / 2 shared
Guéna, Geoffroy
1 / 5 shared
Barigah, Tete Severien
1 / 1 shared
Herbette, Stéphane
1 / 1 shared
Goue, Nadia
1 / 1 shared
Chart of publication period
2014
2013

Co-Authors (by relevance)

  • Moulia, Bruno
  • Louf, Jean-François
  • Badel, Eric
  • Forterre, Yoël
  • Guéna, Geoffroy
  • Barigah, Tete Severien
  • Herbette, Stéphane
  • Goue, Nadia
OrganizationsLocationPeople

document

Biophysical and molecular determinants of vulnerability to cavitation in young poplars

  • Barigah, Tete Severien
  • Cochard, Hervé
  • Herbette, Stéphane
  • Goue, Nadia
  • Badel, Eric
Abstract

Trees acclimate to changing environment. Water transport occurs under negative pressure from the roots to the leaves in the vascular system of the xylem. During water stress, the level of negative pressure can increase drastically and lead to the rupture of the water column. This cavitation event can be critical for the tree. Vulnerability to cavitation (VC) is a highly variable hydraulic trait that depends on the specie and the growing conditions. The anatomical parameters that drive the phenomena are still unknow. Actually, researches focus on the pits structures that are the hydraulic pathway between vessels. In this work, we investigated the impact of different growth conditions on pit structure of young poplars and the relationship with the VC. Xylem formed under stress conditions was analyzed using a multidisciplinary approach:- Ecophysiology: stomatal conductance, transpiration, leaf water potential, VC, primary and secondary growth were measured. - Wood anatomy was investigated at the tissue and cell wall level by optical and TEM microscopy. This approach was associated with X-ray microtomography observations to characterize the spatial distribution of cavitation. - Molecular analysis: We hypothezed that genes involved in VC may be involved in the biosynthesis of the cell wall and pits. We investigated the local transcriptome of the tissues. Preliminary results showed lower stomatal conductance, transpiration and leaf water potential for stressed plants than control plants. X-ray microtomography observations indicated that wood formed under water stress condition is more resistant to embolism. We will discuss the relationship between growth speed and VC.

Topics
  • impedance spectroscopy
  • transmission electron microscopy
  • wood