Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lvov, S.

  • Google
  • 3
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2012Surface and Electrochemical Behavior of HSLA in Supercritical CO2-H2O Environment4citations
  • 2011Surface Studies of HSLA Steel after Electrochemical Corrosion in Supercritical CO2-H2O Environmentcitations
  • 2011Surface Studies of HSLA [high strength low alloy] Steel after Electrochemical Corrosion in Supercritical CO{sub 2}-H{sub 2}O Environmentcitations

Places of action

Chart of shared publication
Ziomek-Moroz, M.
3 / 3 shared
Holcomb, G. R.
1 / 5 shared
Beck, J.
3 / 9 shared
Fedkin, M.
3 / 3 shared
Tylczak, J.
3 / 7 shared
Holcomb, G.
2 / 2 shared
Chart of publication period
2012
2011

Co-Authors (by relevance)

  • Ziomek-Moroz, M.
  • Holcomb, G. R.
  • Beck, J.
  • Fedkin, M.
  • Tylczak, J.
  • Holcomb, G.
OrganizationsLocationPeople

document

Surface Studies of HSLA Steel after Electrochemical Corrosion in Supercritical CO2-H2O Environment

  • Ziomek-Moroz, M.
  • Beck, J.
  • Holcomb, G.
  • Fedkin, M.
  • Lvov, S.
  • Tylczak, J.
Abstract

In aqueous phase saturated with CO2, X-65 sample underwent general corrosion with formation of FeCO3. In supercritical CO2 containing water phase, two major regions are present on the sample surface after the EIS experiment. One region covered with corrosion products identified as FeCO3 and the other containing Fe, oxygen, and carbon-rich islands embedded in metal matrix identified as {alpha}-Fe. Precipitation of FeCO3 from Fe2+ and CO3 2- is responsible for formation of passive layer in oxygen-deficient, CO2 rich aqueous environment. Mechanisms of corrosion degradation occurring in supercritical CO2 as a function. Transport of supercritical CO{sub 2} is a critical element for carbon capture from fossil fuel power plants and underground sequestration. Although acceptable levels of water in supercritical CO{sub 2} (up to {approx} 5 x 10{sup -4}g/dm{sup 3}) have been established, their effects on the corrosion resistance of pipeline steels are not fully known. Moreover, the presence of SO{sub 2}, O{sub 2} impurities in addition to the water can make the fluid more corrosive and, therefore, more detrimental to service materials. Also, in this case, limited data are available on materials performance of carbon steels. to advance this knowledge, other service alloys are being investigated in the high pressure high temperature cell containing impure CO{sub 2} fluids using reliable non-destructive in-situ electrochemical methods. The electrochemical results are being augmented by a number of surface analyses of the corroded surfaces.

Topics
  • surface
  • Carbon
  • corrosion
  • phase
  • experiment
  • Oxygen
  • steel
  • precipitation
  • electrochemical-induced impedance spectroscopy