People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vanfleteren, Jan
IMEC
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Methods to improve accuracy of electronic component positioning in thermoformed electronicscitations
- 2022Innovative component positioning method for thermoformed electronicscitations
- 2022A study on over-molded copper-based flexible electronic circuitscitations
- 2021Fully integrated flexible dielectric monitoring sensor system for real-time in situ prediction of the degree of cure and glass transition temperature of an epoxy resincitations
- 2020Flexible microsystems using over-molding technologycitations
- 2020Solar cells integration in over-molded printed electronicscitations
- 2019Effect of overmolding process on the integrity of electronic circuitscitations
- 20183D multifunctional composites based on large-area stretchable circuit with thermoforming technologycitations
- 2017Stretchable electronic platform for soft and smart contact lens applicationscitations
- 2017Arbitrarily shaped 2.5D circuits using stretchable interconnects embedded in thermoplastic polymerscitations
- 2016One-time deformable thermoplastic devices based on flexible circuit board technologycitations
- 2016RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approachcitations
- 2016Stretchable electronic platform for soft and smart contact lens applications
- 2015Design, construction and testing of a COC 3D flow-over flow-through bioreactor for hepatic cell culture
- 2015Deformable microsystem for in situ cure degree monitoring of GFRP(Glass Fibre Reinforced Plastic)
- 20152.5D smart objects using thermoplastic stretchable interconnectscitations
- 2015Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections
- 2013Stretchable electronics technology for large area applications: fabrication and mechanical characterizationcitations
- 2013Parylene C for hermetic and flexible encapsulation of interconnects and electronic components
- 2012Biocompatible packaging solutions for implantable electronic systems for medical applications
- 2011The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnectscitations
- 20113D-stacking of UTCPs as a module miniaturization technology
- 2007Design of metal interconnects for stretchable electronic circuits using finite element analysiscitations
- 2002An O/E measurement probe based on an optics-extended MCM-D motherboard technology
Places of action
Organizations | Location | People |
---|
document
An O/E measurement probe based on an optics-extended MCM-D motherboard technology
Abstract
An ongoing trend in packaging technology is the introduction of optical interconnections to cope with the problems of increased data transmission speed and the raised interconnection density. Hence, improving packaging and interconnection technologies is only viable if the aspects of optical interfaces and O/E (opto-electronic) components are considered.In this paper, we will demonstrate an MCM-D (Multi Chip Module) technology with O/E features. We achieved to integrate high-precision V-grooves for alignment and fixation of the optical fibers into a standard MCM-D technology. The V-groove shape of the fiber fixation structures is a result of the anisotropic etching of (100) silicon by means of aqueous KOH. The technology aspects of this aggressive wet etching step are discussed as well as the optimisation results of a suitable KOH masking layer: a low-refractive-index PECVD (Plasma Enhanced Chemical Vapour Deposition) nitride. The extension of an MCM-D technology with V-grooves generates the possibility to integrate side-emitting lasers and fibers with the electronics on the same MCM-Si motherboard. This implies a more dense and compact motherboard with the potential of obtaining higher bandwidths due to the minimal distance between optics and electronics. Additionally, low coupling losses between laser and fiber are guaranteed as the accuracy of the V-grooves in silicon allows us to place the fibers with high precision.The feasibility of this optics-extended MCM-D technology will be shown in the example of O/E measurement probes. In the fabrication process of such O/E measurement probes, we will focus on the multilayer MCM-D motherboard extended with V-grooves, on the flip-chip (FC) mounting of the RF-amplifier chip and on the placement of both laserdiode and fiber.