People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mela, Kristo
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Test methods for determination of shear properties of sandwich panels
- 2024Experimental and Numerical Study of Steel-faced Profiled Sandwich Panels with PIR Core Loaded in Flexure
- 2023Experimental investigation on the tensile behaviour of welded RHS high strength steel X-jointscitations
- 2023Experimental investigation on the tensile behaviour of welded RHS high strength steel X-jointscitations
- 2023Equivalent material properties of the heat-affected zone in welded cold-formed rectangular hollow section connectionscitations
- 2023Equivalent material properties of the heat-affected zone in welded cold-formed rectangular hollow section connectionscitations
- 2022Fracture simulation of welded RHS X-joints using GTN damage modelcitations
- 2022Fracture simulation of welded RHS X-joints using GTN damage modelcitations
- 2022Translational stiffness and resistance of sandwich panel connections at elevated temperaturecitations
- 2022Shear resistance of sandwich panel connection at elevated temperaturecitations
- 2022Probabilistic modelling of residual stresses in cold-formed rectangular hollow sectionscitations
- 2022Effective material model for cold-formed rectangular hollow sections in beam element-based advanced analysiscitations
- 2021Load-bearing capacity of cold-formed sinusoidal steel sheetscitations
- 2019Experimental study on temperature distribution of sandwich panel joints in fire
- 2019Numerical analysis of the behaviour of stainless steel cellular beam in fire
- 2019Temperature distribution of trapezoidal sheeting in fire
- 2017Economical design of high strength steel trusses using multi-criteria optimizationcitations
Places of action
Organizations | Location | People |
---|
document
Numerical analysis of the behaviour of stainless steel cellular beam in fire
Abstract
This paper is concerned with the behaviour of stainless steel cellular beams during a fire. Stainless steel has become increasingly popular in recent years for structural applications, mainly due to its excellent corrosion resistance, as well as its other attractive physical and mechanical attributes. During a fire, stainless steel generally retains a higher proportion of their room temperature strength (above temperatures of 550°C) and stiffness (all temperatures) compared with carbon steel. In the current paper, the focus is on the fire behaviour of stainless steel cellular beams. There are no specific design rules available for these members and the carbon steel design rules for cellular beams are typically used with the stainless steel material properties. This work aims to investigate the validity of this approach by analysing the behaviour of stainless steel cellular beams with stiffened webs under fire conditions. A nonlinear finite element (FE) model is developed using the ABAQUS software, and is validated using fire test data. Then, the model is employed to conduct parametric studies in order to determine the most salient factors. Finally, design guidance is provided for stainless steel cellular beams in fire conditions, which consider the most influential geometric and material characteristics.