People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Withey, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Centrifugal casting of complex geometries
Abstract
<p>Centrifugal casting offers one route through to high quality products in difficult to cast high temperature low superheat alloys. The coupling of free surface flows and complex rotating geometries, results in significant centrifugal forces; combined with rapid heat transfer and solidification this yields a significant computational modelling challenge. The objective of the work reported here is to develop a comprehensive computational model of centrifugal casting that can reliably predict the macro-defects that arise from the process. In this contribution we describe: The development of the computational model yielding simulations which involve of the order of a million elements with thousands of time steps on large parallel clusters Experimental data to validate the model, and The configuration of a full scale computational model capturing all the important macro- phenomena.</p>