Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kuutti, Juha

  • Google
  • 17
  • 28
  • 35

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024Constraint effects on fracture toughness of ductile cast iron in the ductile regime1citations
  • 2022Effect of Welding Direction and Bead Pattern in Alloy 52 / SA508 Repair Weldcitations
  • 2022Sensitivity of the Master Curve reference temperature T0 to the crack front curvature6citations
  • 2022Miniature C(T) Specimens-Pinhole Eccentricity and the Effect of Crack Opening Displacement Measurement Location1citations
  • 2021Evaluation of an Alloy 52 / Cladded Carbon Steel Repair Weld by Cold Metal Transfercitations
  • 2021Online nonlinear ultrasound imaging of crack closure during thermal fatigue loading4citations
  • 2020Numerical assessment of the effects of microcrack interaction in AM components3citations
  • 2020A52M/SA502 Dissimilar Metal RPV Repair Weld:Evaluation of different techniquescitations
  • 2020A52M/SA502 Dissimilar Metal RPV Repair Weldcitations
  • 2020A52M/SA52 Dissimilar Metal RPV Repair Weld:Experimental Evaluation and Post-Weld Characterizations1citations
  • 2020A52M/SA52 Dissimilar Metal RPV Repair Weld : Experimental Evaluation and Post-Weld Characterizations1citations
  • 2018Comparison of ASME XI and BS7910 Allowable Surface Flaw Size Evaluation Procedures in Piping Components2citations
  • 2017Use of CTOD as crack driving force parameter for low-cycle thermal fatiguecitations
  • 2013Disposal canister shock absorber tests and analysiscitations
  • 2012A local remeshing procedure to simulate crack propagation in quasi-brittle materials16citations
  • 2011Fracture Assessment of Reactor Circuit (FRAS):Advanced numerical fracture assessment methodscitations
  • 2010Simulation of ice crushing experiment using FE-model update techniquecitations

Places of action

Chart of shared publication
Lindqvist, Sebastian
2 / 23 shared
Forsström, Antti
1 / 9 shared
Sirkiä, Laura
1 / 4 shared
Huotilainen, Caitlin
4 / 14 shared
Keinänen, Heikki
5 / 14 shared
Virkkunen, Iikka
8 / 22 shared
Bhusare, Suprit
1 / 2 shared
Nevasmaa, Pekka
6 / 44 shared
Hytönen, Noora
1 / 13 shared
Mohanty, Gaurav
3 / 33 shared
Lambai, Aloshious
3 / 11 shared
Virkkunen, I.
1 / 2 shared
Sirkiä, L.
1 / 2 shared
Sirén, Henrik
4 / 4 shared
Koskinen, Tuomas
1 / 4 shared
Rinta-Aho, Jari
1 / 2 shared
Kolari, Kari
3 / 13 shared
Peltonen, Mikko
4 / 5 shared
Honkanen, Mari
2 / 22 shared
Keinanen, Heikki
1 / 1 shared
Siren, Henrik
1 / 1 shared
Oinonen, Ahti
1 / 2 shared
Fortino, Stefania
1 / 13 shared
Heinonen, Jaakko
1 / 6 shared
Hakola, Ilkka
1 / 1 shared
Andersson, Tom
1 / 51 shared
Laukkanen, Anssi
1 / 144 shared
Karjalainen-Roikonen, Päivi
1 / 15 shared
Chart of publication period
2024
2022
2021
2020
2018
2017
2013
2012
2011
2010

Co-Authors (by relevance)

  • Lindqvist, Sebastian
  • Forsström, Antti
  • Sirkiä, Laura
  • Huotilainen, Caitlin
  • Keinänen, Heikki
  • Virkkunen, Iikka
  • Bhusare, Suprit
  • Nevasmaa, Pekka
  • Hytönen, Noora
  • Mohanty, Gaurav
  • Lambai, Aloshious
  • Virkkunen, I.
  • Sirkiä, L.
  • Sirén, Henrik
  • Koskinen, Tuomas
  • Rinta-Aho, Jari
  • Kolari, Kari
  • Peltonen, Mikko
  • Honkanen, Mari
  • Keinanen, Heikki
  • Siren, Henrik
  • Oinonen, Ahti
  • Fortino, Stefania
  • Heinonen, Jaakko
  • Hakola, Ilkka
  • Andersson, Tom
  • Laukkanen, Anssi
  • Karjalainen-Roikonen, Päivi
OrganizationsLocationPeople

document

Use of CTOD as crack driving force parameter for low-cycle thermal fatigue

  • Virkkunen, Iikka
  • Kuutti, Juha
Abstract

Repeated exposure to rapid temperature transients causesgradual damage in material. This iscalled thermal fatigue. Thermal fatigue is an importantdegradation mechanism in nuclear power plantcomponents and can limit the plant lifetime where thermalloads are present, e.g., due to turbulent mixingor change in plant operating conditions. The effects ofthe thermal load cycles include residual stresses,hardening or softening of the material and, finally,crack initiation and growth.Traditionally, thermal fatigue crack growth rates areestimated from the stress intensity factorscalculated from uncracked stress distributions and theParis' law. In the low-cycle regime, the use ofweight function based stress intensity factor solutionsderived under linear elastic assumptions isquestionable due to considerable plasticity. On the otherhand, numerical contour integral techniques areill-suited for thermal cyclic loading.In this work, the use of the crack opening displacementas the crack driving force parameter isevaluated through simulations of a low-cycle thermalfatigue experiments. The use of the crack tipopening displacement avoids the traditional limitationsin the numerical evaluation of the J-integral. Theunique relationship between the crack openingdisplacement and J-integral is derived and the crackdriving force is used in a crack growth assessment. Theresults show that the crack driving forcecalculated from the uncracked stress distributionsoverestimates the crack driving force significantly (ascompared to values calculated from the crack openingdisplacement). The crack growth rate calculatedwith the Paris' law is in good agreement with theexperimental results, when the crack driving force iscomputed from the crack opening displacement.

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • crack
  • fatigue
  • plasticity