People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wu, Fan
University of Leicester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Effects of melt pool flow on porosity levels in arc weldingcitations
- 2023Evolution and formation of dissimilar metal interface s in fusion weldingcitations
- 2022X-Ray Imaging of Complex Flow Patterns during Tungsten Inert Gas Weldingcitations
- 2021Synchrotron X-ray observation of flow evolution during fusion welding.
- 2021Mapping flow evolution in gas tungsten arc weld pools
- 2020In situ X-ray observations of transient states in arc weld pools
- 2019Phase-Responsive Fourier Nanotransducers for Probing 2D Materials and Functional Interfacescitations
Places of action
Organizations | Location | People |
---|
document
Synchrotron X-ray observation of flow evolution during fusion welding.
Abstract
Joining materials together is an integral part of the chemical, energy, and automotive industries. Fusion welding with Tungsten inert gas (TIG) process normally uses a non-expendable electrode to weld materials and is widely adopted in modern design due to its stability and versatility. The molten metal flow in the weld pool has an immediate impact on the performance of the welded part by affecting the heat transfer, chemical element distribution, and defect formation. The prediction accuracy of the final microstructure and properties can be improved by understanding the evolution of flow in the melt pool. However, the complexity of the process as well as the limited real-time experimental data availability with comprehensive internal flow behavior considerably hinders accurate modeling and predications of the weld pool. To overcome this issue, we demonstrate the quantitative mapping of the weld pool flow using high-energy synchrotron X-ray imaging. Our X-ray imaging approach with the tracking particles allowed us to visualize the flow evaluation across the weld pool over the solid-liquid-solid transformation. Experimental results indicated the flow patterns are progressively becoming complicated with the expansion of the melt pool. Our flow analysis in conjunction with the variation of the driving forces suggests that gravity-derived buoyancy has a significant effect on fluid flow at the melt pool boundary.