People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koblischka-Veneva, Anjela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Functional LSMO foams for magneto-caloric applications
- 2024Review of Moiré superconductivity and application of the Roeser-Huber formula
- 2023The Paramagnetic Meissner Effect (PME) in Metallic Superconductorscitations
- 2022Microstructural Parameters for Modelling of Superconducting Foamscitations
- 2022Superconductivity 2022
- 2021Microstructure analysis of electrospun La0.8Sr0.2MnO3 nanowires using electron microscopy and electron backscatter diffraction (EBSD)
- 2021Magnetic phases in superconducting, polycrystalline bulk FeSe samples
- 2021Magnetic phases in superconducting, polycrystalline bulk FeSe samplescitations
- 2020On the origin of the sharp, low-field pinning force peaks in MgB2 superconductorscitations
- 2020Magnetic phases in superconducting, polycrystalline bulk FeSe samples
- 2020Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+δ (Bi-2212) Nanowire Fabrics
- 2020Relation between crystal structure and transition temperature of superconducting metals and alloys
- 2020Microstructure and paramagnetic Meissner effect of YBa2Cu3Oy nanowire networkscitations
- 2019Electron Irradiation of Polycrystalline Bulk FeSe Superconductors
- 2019Electron Irradiation of Polycrystalline Bulk FeSe Superconductors
- 2019Exploring the flux pinning performance of bulk FeSe by electron irradiation
- 2019Exploring the flux pinning performance of bulk FeSe by electron irradiation
- 2018Giant Enhancement of Magnetostrictive Response in Directionally-Solidified Fe83Ga17Erx Compounds
- 2013Microstructural Analysis of Electrochemical Coated Open-Cell Metal Foams by EBSD and Nanoindentationcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Magnetic phases in superconducting, polycrystalline bulk FeSe samples
Abstract
International audience ; For possible applications as trapped field (TF) magnets, it is essential to fabricate large, polycrystalline bulk samples from the FeSe compound, the simplest high-Tc superconductor (HTSc) possible. FeSe is relatively cheap to prepare, and does not contain any rare-earth material. The grain boundaries in this compound are not acting as weak links as it is the case for the YBCO compound. Although the transition temperature, Tc, is just below 10 K, the upper critical fields are comparable with other HTSc. Preparing the FeSe samples using solid-state sintering yields samples exhibiting strong magnetic hysteresis loops (MHLs), and the superconducting contribution is only visible after subtracting MHLs from above Tc. Due to the complicated phase diagram [1], the samples are a mixture of several phases, α-FeSe, β-FeSe, δ-FeSe (Fe7Se8) and metallic α-Fe [2]. The amount of the latter two phases depends directly on the Se loss during the sintering process. The δ-FeSe is antiferromagnetic, and α-Fe is ferromagnetic [3]. In the present contribution, we show MHLs of a variety of samples measured up to ±7 T and determine the magnetic characteristics, together with the amount of superconductivity determined from M(T) measurements. We performed a thorough analysis of the microstructures using polarization microscopy, Kerr effect, MFM, SEM, EBSD and TEM in order to establish a relation between microstructure and sample properties. To prepare good superconducting samples, the presence of the (anti)ferromagnetic phases must be reduced by carefully adjusting the Se content using Ti foils as getter materials. Measuring magnetoresistance of these samples [4] implies that the samples are always cooled in the own local field, and thus, the analysis of the resistance data calculating the fluctuation-induced conductivity above Tc [5] is strongly affected by this local magnetic field. We demonstrate the importance of preparing phase-pure FeSe samples, which are essential for the various applications envisaged. ...