People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Branner, Kim
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2025Acoustic emission data analytics on delamination growth in a wind turbine blade under full-scale cyclic testingcitations
- 2024Monitoring Damage Progression in Wind Turbine Blade Under Fatigue Testing Using Acceleration Measurements
- 2024Monitoring Damage Progression in Wind Turbine Blade Under Fatigue Testing Using Acceleration Measurements
- 2021Optimized method for multi-axial fatigue testing of wind turbine bladescitations
- 2021Fatigue testing of a 14.3 m composite blade embedded with artificial defects – damage growth and structural health monitoringcitations
- 2019Understanding progressive failure mechanisms of a wind turbine blade trailing edge section through subcomponent tests and nonlinear FE analysiscitations
- 2018Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminatescitations
- 2018Buckling and progressive failure of trailing edge subcomponent of wind turbine blade
- 2016Methodology for testing subcomponents; background and motivation for subcomponent testing of wind turbine rotor blades
- 2015New morphing blade section designs and structural solutions for smart blades
- 2015Effect of Trailing Edge Damage on Full-Scale Wind Turbine Blade Failure
- 2015Comparing Fatigue Life Estimations of Composite Wind Turbine Blades using different Fatigue Analysis Tools
- 2014Advanced topics on rotor blade full-scale structural fatigue testing and requirements
- 2014An high order Mixed Interpolation Tensorial Components (MITC) shell element approach for modeling the buckling behavior of delaminated compositescitations
- 2014Strain and displacement controls by fibre bragg grating and digital image correlationcitations
- 2014Uncertainty Quantification in Experimental Structural Dynamics Identification of Composite Material Structures
- 2013Calibration of a finite element composite delamination model by experiments
- 2012Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate
- 2012Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate
- 2011Finite elements modeling of delaminations in composite laminates
- 2011Compressive strength of thick composite panels
- 2010Full Scale Test of SSP 34m blade, edgewise loading LTT:Data Report 1
- 2008Full Scale Test of a SSP 34m boxgirder 2:Data report
- 2008Buckling Strength of Thick Composite Panels in Wind Turbine Blades
- 2008Buckling Strength of Thick Composite Panels in Wind Turbine Blades
- 2008Full Scale Test of a SSP 34m boxgirder 2
Places of action
Organizations | Location | People |
---|
document
Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate
Abstract
In this work, a cure hardening instantaneous linear elastic (CHILE) model and a path dependent (PD) constitutive approach are compared, for the case of modelling strain build-up during curing of a thick composite laminate part. The PD approach is a limiting case of viscoelasticity with path dependency on temperature and cure degree. Model predictions are compared to experimentally determined in-situ strains, determined using FBG sensors. It was found that both models offer good approximations of internal strain build-up. A general shortcoming is the lack of capturing rate-dependent effects such as creep.