Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ketoja, Jukka A.

  • Google
  • 17
  • 58
  • 136

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2022Lignin interdiffusion - a mechanism behind improved wet strengthcitations
  • 2022Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers14citations
  • 2022Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers14citations
  • 2021General mean-field theory to predict stress-compression behaviour of lightweight fibrous materialscitations
  • 2020Crossover from mean-field compression to collective phenomena in low-density foam-formed fiber material11citations
  • 2018Foam-formed fibre materialscitations
  • 2018Effect of cellulosic fibers on foam dynamicscitations
  • 2017Novel biobased micro- and nanomaterials in porous foam formed structurescitations
  • 2017Design-driven integrated development of technical and perceptual qualities in foam-formed cellulose fibre materials18citations
  • 2017Design-driven integrated development of technical and perceptual qualities in foam-formed cellulose fibre materials18citations
  • 2016Tailoring the microporous structure of fibre materials with foam carriercitations
  • 2016Porous structure of fibre networks formed by a foaming process: a comparative study of different characterization techniques14citations
  • 2015The effect of physical adhesion promotion treatments on interfacial adhesion in cellulose-epoxycitations
  • 2014Wet fibre-laden foams in axial mixing with macro-instabilitiescitations
  • 2013Bubble size and air content of wet fibre foams in axial mixing with macro-instabilities46citations
  • 2009Wet Web Rheology on a Paper Machinecitations
  • 2008Simulation of triaxial deformation of wet fiber networks1citations

Places of action

Chart of shared publication
Engstrand, Per
1 / 1 shared
Pettersson, Gunilla
1 / 1 shared
Mattsson, Amanda
1 / 2 shared
Joelsson, Tove
1 / 1 shared
Hörhammer, Hanna
2 / 3 shared
Kataja, Kirsi
2 / 7 shared
Borrega, Marc
2 / 12 shared
Tanaka, Atsushi
4 / 12 shared
Palmgren, Rosa
2 / 2 shared
Sundqvist-Andberg, Henna
1 / 1 shared
Kenttä, Eija
2 / 14 shared
Salo, Minna
2 / 2 shared
Hinkka, Ville
2 / 2 shared
Sundqvist, Henna
1 / 3 shared
Koivisto, Juha
2 / 14 shared
Paunonen, Sara
1 / 5 shared
Mäkinen, Tero
2 / 11 shared
Alava, Mikko
1 / 10 shared
Pääkkönen, Elina
2 / 10 shared
Pöhler, Tiina
2 / 6 shared
Alava, Mikko J.
1 / 19 shared
Ketola, Annika
1 / 3 shared
Lappalainen, Timo
3 / 7 shared
Hjelt, Tuomo
5 / 6 shared
Tammelin, Tekla
2 / 26 shared
Pajari, Heikki
2 / 7 shared
Stubenrauch, C.
1 / 3 shared
Preisig, N.
1 / 1 shared
Laine, Christiane
2 / 5 shared
Tardy, B.
1 / 1 shared
Rojas, Orlando J.
1 / 51 shared
Xiang, Wenchao
1 / 2 shared
Paajanen, Arja
1 / 1 shared
Sirviö, Jari
1 / 2 shared
Torvinen, Katariina
1 / 9 shared
Härkäsalmi, Tiina
1 / 1 shared
Siljander, Sanna
3 / 10 shared
Itälä, Jukka
2 / 2 shared
Lehmonen, Jani
2 / 3 shared
Peralta, Carlos
2 / 2 shared
Niinimäki, Kirsi
1 / 1 shared
Lehmonen, Janni
1 / 1 shared
Ahmad, M. Al-Qararah
1 / 1 shared
Paananen, Arja
1 / 2 shared
Koponen, Antti Ilmari
3 / 10 shared
Al-Qararah, Ahmad M.
2 / 2 shared
Ekman, Axel
1 / 1 shared
Timonen, Jussi
1 / 3 shared
Kiiskinen, Harri
1 / 10 shared
Sarlin, Essi
1 / 20 shared
Heikkilä, Pirjo
1 / 29 shared
Putkonen, Matti
1 / 39 shared
Lahti, Johanna
1 / 5 shared
Vuorinen, Jyrki
1 / 7 shared
Al-Qararah, Ahmad
1 / 1 shared
Harlin, Ali
2 / 47 shared
Asikainen, Jaakko
1 / 4 shared
Miettinen, Pasi P. J.
1 / 1 shared
Chart of publication period
2022
2021
2020
2018
2017
2016
2015
2014
2013
2009
2008

Co-Authors (by relevance)

  • Engstrand, Per
  • Pettersson, Gunilla
  • Mattsson, Amanda
  • Joelsson, Tove
  • Hörhammer, Hanna
  • Kataja, Kirsi
  • Borrega, Marc
  • Tanaka, Atsushi
  • Palmgren, Rosa
  • Sundqvist-Andberg, Henna
  • Kenttä, Eija
  • Salo, Minna
  • Hinkka, Ville
  • Sundqvist, Henna
  • Koivisto, Juha
  • Paunonen, Sara
  • Mäkinen, Tero
  • Alava, Mikko
  • Pääkkönen, Elina
  • Pöhler, Tiina
  • Alava, Mikko J.
  • Ketola, Annika
  • Lappalainen, Timo
  • Hjelt, Tuomo
  • Tammelin, Tekla
  • Pajari, Heikki
  • Stubenrauch, C.
  • Preisig, N.
  • Laine, Christiane
  • Tardy, B.
  • Rojas, Orlando J.
  • Xiang, Wenchao
  • Paajanen, Arja
  • Sirviö, Jari
  • Torvinen, Katariina
  • Härkäsalmi, Tiina
  • Siljander, Sanna
  • Itälä, Jukka
  • Lehmonen, Jani
  • Peralta, Carlos
  • Niinimäki, Kirsi
  • Lehmonen, Janni
  • Ahmad, M. Al-Qararah
  • Paananen, Arja
  • Koponen, Antti Ilmari
  • Al-Qararah, Ahmad M.
  • Ekman, Axel
  • Timonen, Jussi
  • Kiiskinen, Harri
  • Sarlin, Essi
  • Heikkilä, Pirjo
  • Putkonen, Matti
  • Lahti, Johanna
  • Vuorinen, Jyrki
  • Al-Qararah, Ahmad
  • Harlin, Ali
  • Asikainen, Jaakko
  • Miettinen, Pasi P. J.
OrganizationsLocationPeople

document

General mean-field theory to predict stress-compression behaviour of lightweight fibrous materials

  • Koivisto, Juha
  • Ketoja, Jukka A.
  • Paunonen, Sara
  • Mäkinen, Tero
  • Alava, Mikko
  • Pääkkönen, Elina
  • Pöhler, Tiina
Abstract

We have postulated a new theory to describe the stress-strain behaviour of low-density random fibre networks under compression [1]. Predictions of the theory were verified with experiments on more than a hundred different bio-based fibre materials with varied density and raw materials. In parallel to mechanical testing, high-speed imaging and acoustic emission measurements revealed key mechanisms and domains in which the theory was applicable.<br/>Material compression causes axial stress in fibres in addition to their bending. By assuming that fibre segments longer than a0s(e) (a0 is the mean segment length) undergo a buckling failure at strain e, the compressive stress σ becomes [1]<br/>σ(e)=σ1/[s(e)]2, with s satisfying [s(e)+1]exp[−s(e)]=e.<br/>The theory was applied to fibre materials produced with laboratory foam forming process, which uses aqueous foam as transfer medium to deposit fibres into a connected structure. The achieved low density (20−100 kg/m3) of the dried material allowed for individual fibres to bend without contacting the neighbouring fibres. The used raw materials in our experiments were chemical, mechanical and regenerated cellulose fibres of varied dimensions.<br/>The above simple mean-field theory described the experimental stress-strain behaviour surprisingly well at moderate, from 10% to 50%, compression levels. Moreover, high-speed imaging during compression showed abrupt local dislocations, interpreted as buckling failures of heterogeneous fibres under axial stress. In cyclic measurements, we observed significant acoustic emission only when the compressive strain exceeded the previous strains. This suggested a failure source other than fibre bending. Beyond c.a. 50% compression, the number of acoustic events grew rapidly suggesting a crossover to collective phenomena. At the same time, the compression-stress behaviour began to deviate from the mean-field prediction.<br/>REFERENCES<br/>[1] J. A. Ketoja, S. Paunonen, P. Jetsu, E. Pääkkönen, Compression strength mechanisms of low-density fibrous materials. Materials, Vol. 12, 384, 2019.

Topics
  • density
  • impedance spectroscopy
  • theory
  • experiment
  • strength
  • stress-strain behavior
  • dislocation
  • forming
  • acoustic emission
  • random
  • cellulose