People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ketoja, Jukka A.
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022Lignin interdiffusion - a mechanism behind improved wet strength
- 2022Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fiberscitations
- 2022Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fiberscitations
- 2021General mean-field theory to predict stress-compression behaviour of lightweight fibrous materials
- 2020Crossover from mean-field compression to collective phenomena in low-density foam-formed fiber materialcitations
- 2018Foam-formed fibre materials
- 2018Effect of cellulosic fibers on foam dynamics
- 2017Novel biobased micro- and nanomaterials in porous foam formed structures
- 2017Design-driven integrated development of technical and perceptual qualities in foam-formed cellulose fibre materialscitations
- 2017Design-driven integrated development of technical and perceptual qualities in foam-formed cellulose fibre materialscitations
- 2016Tailoring the microporous structure of fibre materials with foam carrier
- 2016Porous structure of fibre networks formed by a foaming process: a comparative study of different characterization techniquescitations
- 2015The effect of physical adhesion promotion treatments on interfacial adhesion in cellulose-epoxy
- 2014Wet fibre-laden foams in axial mixing with macro-instabilities
- 2013Bubble size and air content of wet fibre foams in axial mixing with macro-instabilitiescitations
- 2009Wet Web Rheology on a Paper Machine
- 2008Simulation of triaxial deformation of wet fiber networkscitations
Places of action
Organizations | Location | People |
---|
document
General mean-field theory to predict stress-compression behaviour of lightweight fibrous materials
Abstract
We have postulated a new theory to describe the stress-strain behaviour of low-density random fibre networks under compression [1]. Predictions of the theory were verified with experiments on more than a hundred different bio-based fibre materials with varied density and raw materials. In parallel to mechanical testing, high-speed imaging and acoustic emission measurements revealed key mechanisms and domains in which the theory was applicable.<br/>Material compression causes axial stress in fibres in addition to their bending. By assuming that fibre segments longer than a0s(e) (a0 is the mean segment length) undergo a buckling failure at strain e, the compressive stress σ becomes [1]<br/>σ(e)=σ1/[s(e)]2, with s satisfying [s(e)+1]exp[−s(e)]=e.<br/>The theory was applied to fibre materials produced with laboratory foam forming process, which uses aqueous foam as transfer medium to deposit fibres into a connected structure. The achieved low density (20−100 kg/m3) of the dried material allowed for individual fibres to bend without contacting the neighbouring fibres. The used raw materials in our experiments were chemical, mechanical and regenerated cellulose fibres of varied dimensions.<br/>The above simple mean-field theory described the experimental stress-strain behaviour surprisingly well at moderate, from 10% to 50%, compression levels. Moreover, high-speed imaging during compression showed abrupt local dislocations, interpreted as buckling failures of heterogeneous fibres under axial stress. In cyclic measurements, we observed significant acoustic emission only when the compressive strain exceeded the previous strains. This suggested a failure source other than fibre bending. Beyond c.a. 50% compression, the number of acoustic events grew rapidly suggesting a crossover to collective phenomena. At the same time, the compression-stress behaviour began to deviate from the mean-field prediction.<br/>REFERENCES<br/>[1] J. A. Ketoja, S. Paunonen, P. Jetsu, E. Pääkkönen, Compression strength mechanisms of low-density fibrous materials. Materials, Vol. 12, 384, 2019.