People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nowiński, Jan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2016Dependence of a glass transition temperature on a heating rate in DTA experiments for glasses containing transition metal oxidescitations
- 2016Nanocrystallisation in vanadate phosphate and lithium iron vanadate phosphate glassescitations
- 2015High electronic conductivity in nanostructured materials based on lithium-iron-vanadate-phosphate glassescitations
- 2013Isothermal nanocrystallization of vanadate-phosphate glassescitations
- 2013Novel vanadium-doped olivine-like nanomaterials with high electronic conductivitycitations
- 2011DSC and electrical conductivity studies on superionic all-glass phosphate-based composites
- 2011Electrical properties of the all-glass composite silver ion conductorscitations
- 2011Electrical properties and thermal stability of FePO4 glasses and nanomaterialscitations
- 2011Electrical properties vs. microstructure of nanocrystallized V2O5–P2O5 glasses — An extended temperature range studycitations
- 2011Electrical conductivity and phase transformations in the composite ionic conductors AgI : α-Al2O3 prepared via a high-pressure routecitations
- 2009Novel nanomaterials based on electronic and mixed conductive glassescitations
- 2009Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glassescitations
- 2008Electrical properties and microstructure of glassy-crystalline Ag+-ion conducting composites synthesized by a high-pressure methodcitations
- 2007Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glassescitations
- 2007Conductivity, thermal behavior and microstructure of new composites based on AgI–Ag2O–B2O3 glasses with Al2O3 matrixcitations
- 2006Conductivity and microstructure of silver borate glass/zirconia composites, prepared via a high pressure route
- 2006Effect of nanocrystallization on the electronic conductivity of vanadate-phosphate glassescitations
- 2006Crystallization processes in superionic AgI-Ag20-P205 ([Ag2O]/[P2O5] = 3) glasses
- 2004Enhancement of electrical conductivity in lithium vanadate glasses by nanocrystallizationcitations
Places of action
Organizations | Location | People |
---|
article
Crystallization processes in superionic AgI-Ag20-P205 ([Ag2O]/[P2O5] = 3) glasses
Abstract
Crystallization processes in superionic Agl-Ag2O-P2O5 ([Ag2O]/[P2O5] = 3) glasses were investigated by X-ray, DSC, SEM, and impedance spectroscopy. It was found that the crystallization process depended on the total concentration of the Agi dopant in the material and on the thermal treatment of the glass. During quenching of the glass melt, the following phases are successively formed with increasing total Agi concentration: pure glass without detectable (XRD) traces of crystalline phases, glasses containing β-Agl and some other, unidentified crystallites precipitated on the surface, and finally a composite material, namely a glass matrix in which β/γ-Agl inclusions are embedded. Glasses containing x < 50 mol % of Agi do not crystallize during annealing. Two bulk crystallization processes were identified in solid glasses with 50 < x < 75 mol %. During annealing, the initial product of crystallization transforms to the final one. There is an evidence that crystallization is preceded by a pre- crystallization stage, in which the glass matrix becomes inhomogeneous, forming nano-sized volumes.