People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ufimtsev, Ivan S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2013Generating Efficient Quantum Chemistry Codes for Novel Architecturescitations
- 2013Generating Efficient Quantum Chemistry Codes for Novel Architectures.
- 2011Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs)citations
- 2011Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs).
- 2009Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation.
- 2009Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementationcitations
- 2008Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluationcitations
- 2008Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation.
Places of action
Organizations | Location | People |
---|
article
Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs).
Abstract
It has recently been demonstrated that novel streaming architectures found in consumer video gaming hardware such as graphical processing units (GPUs) are well-suited to a broad range of computations including electronic structure theory (quantum chemistry). Although recent GPUs have developed robust support for double precision arithmetic, they continue to provide 2-8× more hardware units for single precision. In order to maximize performance on GPU architectures, we present a technique of dynamically selecting double or single precision evaluation for electron repulsion integrals (ERIs) in Hartree-Fock and density functional self-consistent field (SCF) calculations. We show that precision error can be effectively controlled by evaluating only the largest integrals in double precision. By dynamically scaling the precision cutoff over the course of the SCF procedure, we arrive at a scheme that minimizes the number of double precision integral evaluations for any desired accuracy. This dynamic precision scheme is shown to be effective for an array of molecules ranging in size from 20 to nearly 2000 atoms.