Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Casonato, Alberto

  • Google
  • 2
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 20213D Printed Medical Grade Ti-6Al-4V Osteosynthesis Devices Meet the Requirements for Tensile Strength, Bending, Fatigue and Biocompatibilitycitations
  • 2019Evaluating strength of 3D printed screw threads for patient-specific osteosynthesis platescitations

Places of action

Chart of shared publication
Gill, H. S.
2 / 18 shared
Macleod, Alisdair
2 / 4 shared
Taylor, Ryan
2 / 2 shared
Patterson, Michael
1 / 3 shared
Harris, Alex
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Gill, H. S.
  • Macleod, Alisdair
  • Taylor, Ryan
  • Patterson, Michael
  • Harris, Alex
OrganizationsLocationPeople

document

3D Printed Medical Grade Ti-6Al-4V Osteosynthesis Devices Meet the Requirements for Tensile Strength, Bending, Fatigue and Biocompatibility

  • Gill, H. S.
  • Macleod, Alisdair
  • Taylor, Ryan
  • Casonato, Alberto
Abstract

Objectives<br/>Additive manufacturing has led to numerous innovations in orthopaedic surgery: surgical guides; surface coatings/textures; and custom implants. Most contemporary implants are made from titanium alloy (Ti-6Al-4V). Despite being widely available industrially and clinically, there is little published information on the performance of this 3D printed material for orthopaedic devices with respect to regulatory approval. <br/>The aim of this study was to document the mechanical, chemical and biological properties of selective laser sintering (SLS) manufactured specimens following medical device (TOKA®, 3D Metal Printing LTD, UK) submission and review by the UK Medicines and Healthcare Products Regulatory Agency (MHRA).<br/>Methods <br/>All specimens were additively manufactured in Ti-6Al-4V ELI (Renishaw plc, UK). Mechanical tests were performed according to ISO 6892-1, ISO 9585 and ISO 12107 for tensile (n=10), bending (n=3) and fatigue (n=16) respectively (University of Bath, UK). Appropriate chemical characterisation and biological tests were selected according to recommendations in ISO 10993 and conducted by external laboratories (Wickham Labs, UK; Lucideon, UK; Edwards Analytical, UK) in adherence with Good Lab Practise guidelines. A toxicological review was conducted on the findings (Bibra, UK).<br/>Results <br/>The mechanical tests demonstrated that the material performed to the specification for conventionally manufactured titanium alloy of this type (ISO 5832-3). The toxicology review concluded that there were no significant concerns for the health of the patients identified in this evaluation and implantation of the TOKA® device would not result in a significant health risk to patients.<br/>Conclusions<br/>Reflecting on our MHRA experience, additive manufacture of orthopaedic devices is still considered to be a ‘novel’ process by regulatory bodies, requiring additional safety evidence. Despite this, our findings demonstrate that there is no difference, mechanically or chemically, to the traditionally manufactured alloy material. We hope to support the widening use of 3D printed titanium alloy orthopaedic devices by publishing our route to regulatory approval.<br/>

Topics
  • impedance spectroscopy
  • surface
  • strength
  • fatigue
  • texture
  • titanium
  • titanium alloy
  • tensile strength
  • sintering
  • laser sintering
  • biocompatibility
  • static light scattering