Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gill, H. S.

  • Google
  • 18
  • 36
  • 96

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2024Experiments and numerical modelling of secondary flows of blood and shear-thinning blood analogue fluids in rotating domains2citations
  • 2024Auxetic fixation devices can achieve superior pullout performances compared to standard fixation concepts3citations
  • 2021Properties of PMMA end cap holders affect FE stiffness predictions of vertebral specimenscitations
  • 20213D Printed Medical Grade Ti-6Al-4V Osteosynthesis Devices Meet the Requirements for Tensile Strength, Bending, Fatigue and Biocompatibilitycitations
  • 2019Evaluating strength of 3D printed screw threads for patient-specific osteosynthesis platescitations
  • 2019Evaluation of optimised cervical spine viscoelastic elements for sport injury analysiscitations
  • 2018The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates – an experimental and finite element study.39citations
  • 2017Validated cemented socket model for optimising acetabular fixationcitations
  • 2017Effect of absorbed fatty acids on physical properties of ultra-high molecular weight polyethylenecitations
  • 2017Use of contrast agents on polymeric materialscitations
  • 2016A Python Package to Assign Material Properties of Bone to Finite Element Models from within Abaqus Softwarecitations
  • 2016An open source software tool to assign the material properties of bone for ABAQUS finite element simulations24citations
  • 2016A validated specimen specific finite element model of vertebral body failurecitations
  • 2016Variations in Cortical Thickness of Composite Femur Test Specimenscitations
  • 2015Tibial Fracture after Unicompartmental Knee Replacement: The Importance of Surgical Cut Accuracycitations
  • 2014Classification of retinal ganglion cells in the southern hemisphere lamprey Geotria australis (Cyclostomata)14citations
  • 2014Effect of Q-switched laser surface texturing of titanium on osteoblast cell responsecitations
  • 2013Fracture of mobile unicompartmental knee bearings14citations

Places of action

Chart of shared publication
Kelly, Nathaniel
1 / 1 shared
Fraser, Katharine
1 / 1 shared
Cookson, Andrew
1 / 1 shared
Barnett, Elinor
1 / 1 shared
Fletcher, James
1 / 1 shared
Loukaides, Evripides G.
1 / 9 shared
Pegg, Elise Catherine
7 / 11 shared
Hernandez, Bruno Agostinho
1 / 1 shared
Gheduzzi, Sabina
3 / 8 shared
Macleod, Alisdair
4 / 4 shared
Taylor, Ryan
2 / 2 shared
Casonato, Alberto
2 / 2 shared
Patterson, Michael
1 / 3 shared
Harris, Alex
1 / 1 shared
Cazzola, Dario
1 / 1 shared
Preatoni, Ezio
1 / 2 shared
Fregly, Benjamin J.
1 / 1 shared
Serrancoli, Gil
1 / 1 shared
Toms, Andrew
1 / 1 shared
Gosiewski, Jan
1 / 1 shared
Zaribaf, Parnian Hossein Zadeh
2 / 2 shared
Mahmoodi, P.
1 / 1 shared
Sleeman, J.
1 / 1 shared
Hernandez, B. A.
1 / 1 shared
Pandit, Hemant
1 / 3 shared
Murray, David
1 / 2 shared
Coimbra, Joao
1 / 1 shared
Fletcher, Lee
1 / 1 shared
Potter, I. C.
1 / 1 shared
Collin, Shaun
1 / 1 shared
Scotchford, C. A.
1 / 5 shared
Voisey, K. T.
1 / 9 shared
Martin, L.
1 / 15 shared
Murray, David W.
1 / 1 shared
Pandit, Hemant G.
1 / 1 shared
Oconnor, John J.
1 / 1 shared
Chart of publication period
2024
2021
2019
2018
2017
2016
2015
2014
2013

Co-Authors (by relevance)

  • Kelly, Nathaniel
  • Fraser, Katharine
  • Cookson, Andrew
  • Barnett, Elinor
  • Fletcher, James
  • Loukaides, Evripides G.
  • Pegg, Elise Catherine
  • Hernandez, Bruno Agostinho
  • Gheduzzi, Sabina
  • Macleod, Alisdair
  • Taylor, Ryan
  • Casonato, Alberto
  • Patterson, Michael
  • Harris, Alex
  • Cazzola, Dario
  • Preatoni, Ezio
  • Fregly, Benjamin J.
  • Serrancoli, Gil
  • Toms, Andrew
  • Gosiewski, Jan
  • Zaribaf, Parnian Hossein Zadeh
  • Mahmoodi, P.
  • Sleeman, J.
  • Hernandez, B. A.
  • Pandit, Hemant
  • Murray, David
  • Coimbra, Joao
  • Fletcher, Lee
  • Potter, I. C.
  • Collin, Shaun
  • Scotchford, C. A.
  • Voisey, K. T.
  • Martin, L.
  • Murray, David W.
  • Pandit, Hemant G.
  • Oconnor, John J.
OrganizationsLocationPeople

document

3D Printed Medical Grade Ti-6Al-4V Osteosynthesis Devices Meet the Requirements for Tensile Strength, Bending, Fatigue and Biocompatibility

  • Gill, H. S.
  • Macleod, Alisdair
  • Taylor, Ryan
  • Casonato, Alberto
Abstract

Objectives<br/>Additive manufacturing has led to numerous innovations in orthopaedic surgery: surgical guides; surface coatings/textures; and custom implants. Most contemporary implants are made from titanium alloy (Ti-6Al-4V). Despite being widely available industrially and clinically, there is little published information on the performance of this 3D printed material for orthopaedic devices with respect to regulatory approval. <br/>The aim of this study was to document the mechanical, chemical and biological properties of selective laser sintering (SLS) manufactured specimens following medical device (TOKA®, 3D Metal Printing LTD, UK) submission and review by the UK Medicines and Healthcare Products Regulatory Agency (MHRA).<br/>Methods <br/>All specimens were additively manufactured in Ti-6Al-4V ELI (Renishaw plc, UK). Mechanical tests were performed according to ISO 6892-1, ISO 9585 and ISO 12107 for tensile (n=10), bending (n=3) and fatigue (n=16) respectively (University of Bath, UK). Appropriate chemical characterisation and biological tests were selected according to recommendations in ISO 10993 and conducted by external laboratories (Wickham Labs, UK; Lucideon, UK; Edwards Analytical, UK) in adherence with Good Lab Practise guidelines. A toxicological review was conducted on the findings (Bibra, UK).<br/>Results <br/>The mechanical tests demonstrated that the material performed to the specification for conventionally manufactured titanium alloy of this type (ISO 5832-3). The toxicology review concluded that there were no significant concerns for the health of the patients identified in this evaluation and implantation of the TOKA® device would not result in a significant health risk to patients.<br/>Conclusions<br/>Reflecting on our MHRA experience, additive manufacture of orthopaedic devices is still considered to be a ‘novel’ process by regulatory bodies, requiring additional safety evidence. Despite this, our findings demonstrate that there is no difference, mechanically or chemically, to the traditionally manufactured alloy material. We hope to support the widening use of 3D printed titanium alloy orthopaedic devices by publishing our route to regulatory approval.<br/>

Topics
  • impedance spectroscopy
  • surface
  • strength
  • fatigue
  • texture
  • titanium
  • titanium alloy
  • tensile strength
  • sintering
  • laser sintering
  • biocompatibility
  • static light scattering