People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gharsalli, Leila
Institut Polytechnique des Sciences Avancées
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Hybrid Genetic Algorithmscitations
- 2019Hybrid Genetic Algorithms
- 2014Variational Bayesian inversion for microwave imaging applied to breast cancer detection
- 2014Variational Bayesian inversion for microwave breast imaging
- 2014A gradient-like variational Bayesian approach: Application to microwave imaging for breast tumor detectioncitations
- 2013Microwave tomography for breast cancer detection within a Variational Bayesian Approach
Places of action
Organizations | Location | People |
---|
conferencepaper
Variational Bayesian inversion for microwave imaging applied to breast cancer detection
Abstract
International audience ; In this work, microwave imaging is considered as a nonlinear inverse scattering problem and tackled within a Bayesian estimation framework. The object under test (breast affected by a tumor) is supposed to be composed of compact regions made of a restricted number of different homogeneous materials. This a priori knowledge is appropriately translated by a Gauss-Markov-Potts prior. First, we express the a posteriori probability laws of all the unknowns and then the Variational Bayesian Approximation (VBA) used to compute the posterior estimators and reconstruct both permittivity and conductivity maps. This approximation consists in the best separable probability law that approximates the true posterior probability law in the Kullback-Leibler sense. This leads to an implicit parametric optimization scheme which is solved iteratively. Some preliminary results, obtained by applying the proposed method to synthetic data, are presented and compared to those obtained by means of the classical contrast source inversion method.