People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Keatch, Robert
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Enhanced antibacterial and anti-adhesive activities of silver–PTFE nanocomposite coating for urinary catheterscitations
- 2019Enhanced Antibacterial and Antiadhesive Activities of Silver-PTFE Nanocomposite Coating for Urinary Catheterscitations
- 2019In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheterscitations
- 2009Bio-Mechanical Evaluation of a 3D Printed Composite Material
- 2009Microstructure and Cell Adhesion of Hydroxyapatite/Collagen Composites
- 2002Application of photosensitive resins to microengineering target components
- 2000The Production of High-Aspect-Ratio Microstructures (HARMS)citations
Places of action
Organizations | Location | People |
---|
article
Application of photosensitive resins to microengineering target components
Abstract
The field of laser fusion involves the development of new technologies to aid in the fabrication of miniature components used in the target drive system. Current techniques range from cnc lathing with ultra-precise diamond turning to electroplating and mechanical punching. These techniques are labour intensive and are unsatisfactory for many applications. This paper outlines techniques adopted from the microelectronics industry, which have been developed to fabricate these components using a process known as Microengineering. This approach allows the mass production of these devices with the diversity required to alter dimensions, profile, and material depending on the application(1,2). These microengineering processes have allowed a variety of materials to be investigated with various geometrical features and surface topographies. Using thick photosensitive polymers, combined with electroplating processes, complex 3-D structures have been fabricated in multiple stages.