People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Andersson, Tom
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (51/51 displayed)
- 2024Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2023Estimating Long Term Behaviour Of DED-printed AlCoNiFe Alloy
- 2023Estimating Long Term Behaviour Of DED-printed AlCoNiFe Alloy
- 2023Micromechanical modeling of single crystal and polycrystalline UO2 at elevated temperaturescitations
- 2023Performance Driven Design And Modeling Of Compositionally Complex AM Al-Co-Ni-Fe Alloys
- 2023Performance Driven Design And Modeling Of Compositionally Complex AM Al-Co-Ni-Fe Alloys
- 2023Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2023Micromechanical modeling of single crystal and polycrystalline UO 2 at elevated temperaturescitations
- 2022Numerical Design Of High Entropy Super Alloy Using Multiscale Materials Modeling And Deep Learning
- 2022Crystal Plasticity Modeling of Grey Cast Irons under Tension, Compression and Fatigue Loadingscitations
- 2022Micromechanical modelling of additively manufactured high entropy alloys to establish structure-properties-performance workflow
- 2022Opportunities Of Physics-Based Multi-Scale Modeling Tools In Assessing Intra-Grain Heterogeneities, Polycrystal Properties And Residual Stresses Of AM Metals
- 2022Micromorphic crystal plasticity approach to damage regularization and size effects in martensitic steelscitations
- 2021Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticitycitations
- 2021Micromechanics driven design of ferritic–austenitic duplex stainless steel microstructures for improved cleavage fracture toughnesscitations
- 2021Crystal plasticity with micromorphic regularization in assessing scale dependent deformation of polycrystalline doped copper alloyscitations
- 2021Micromechanical and multi-scale modeling of manganese containing slag comminution in the design of energy efficient secondary raw material beneficiation processescitations
- 2020Development and validation of coupled erosion-corrosion model for wear resistant steels in environments with varying pHcitations
- 2020Modelling selective laser melting machine configurations
- 2020Micromechanical modeling of polycrystalline high manganese austenitic steel subjected to abrasive contactcitations
- 2019Micromechanical modeling of short crack nucleation and growth in high cycle fatigue of martensitic microstructurescitations
- 2019Data-Driven Optimization Of Metal Additive Manufacturing Solutions
- 2019On The Linking Performance Evaluation Toolset To Process-structure-properties Mapping Of Selective Laser Melting 316L Stainless Steel Using Micromechanical Approach With A Length-scale Dependent Crystal Plasticity
- 2019Process-Structure-Properties-Performance Modeling for Selective Laser Meltingcitations
- 2019A multiscale modelling approach for estimating the effect of defects in unidirectional carbon fiber reinforced polymer compositescitations
- 2018Modelling of hygroexpansion in birch pulp - PLA composites
- 2018Utilizing the theory of critical distances in conjunction with crystal plasticity for low-cycle notch fatigue analysis of S960 MC high-strength steelcitations
- 2018Modelling of hygroexpansion in birch pulp - PLA composites:A numerical approach based on X-ray micro-tomography
- 2018Process-to-structure mapping of selective laser melting of a nickel based superalloy via phase field modelling
- 2018Micromechanical model for fatigue limit of metal AM parts and materials
- 2018Micromechanical modeling of titanium carbide composites with high work hardening metal matrix
- 2017Micromechanical modeling of failure behavior of metallic materialscitations
- 2016Effective interface model for design and tailoring of wc-co microstructurescitations
- 2016Modeling chloride ingress under freeze-thaw loading – 3D fem approach
- 2016Modeling chloride ingress under freeze-thaw loading – 3D fem approach
- 2016Component scale process model for metal additive manufacturing
- 2016Relaxation behaviour of copper in disposal canisters
- 2016Predicting stiffness and strength of birch pulp:Polylactic acid compositescitations
- 2016Optimization and simulation of SLM process for high density H13 tool steel partscitations
- 2015Effective interface model for design and tailoring of wc-co microstructures
- 2015Mesoscale modelling of short crack initiation in metallic selective laser melting microstructures
- 2015Material integrity of welded copper overpack:Annual report 2014
- 2015Material integrity of welded copper overpack
- 2013Creep properties of Zircaloy-4 for nuclear fuel cladding FEA simulation
- 2013Performance of copper overpack for repository canisters
- 2013Creep life simulations of EB welded copper overpack
- 2012The effect of coating characteristics on the coating performance of a-C:H and ta-C films
- 2012The effect of coating properties on the performance of a-C:H and ta-C films
- 2011Fracture Assessment of Reactor Circuit (FRAS):Advanced numerical fracture assessment methods
- 2010Analysis of Discontinuities in Metallic Materials With the Extended Finite Element Method ; Epäjatkuvuuksien analysointi metallisissa materiaaleissa XFEM-menetelmällä
- 2010Characterization of true stress-strain behavior using optical monitoring
Places of action
Organizations | Location | People |
---|
document
Effective interface model for design and tailoring of wc-co microstructures
Abstract
Interface structures are a key feature in developing modern composite material solutions with ever improved performance. To that effect, we present a nano-microstructural modeling approach for the WC-Co system which can include the interface structures of WC-Co and various other phases present in the microstructure, utilising a methodology which combines imaging based and synthetically generated nano-microstructures into an effective interface model for predicting the behavior and properties of the resulting composite material. The effective model comprises of a local model of the WC-Co interface interacting with a larger scale model of the WC-Co microstructure. The interface model consists of either layered modeling of the different phase structures (phases of WC, films due to doping of cemented carbides, binder phase and microstructure, segregated and carbide structures within the binder such as gamma or eta phases, oriented and/or gradient structures etc.) or utilization of locally defined spatial morphologies and properties in three-dimensional models. In this current work, two approaches are made available and demonstrated. Firstly, commonly identified interface structures can be assessed with the methodology via creation of synthetic carbide-carbide, carbide-binder or related microstructural characteristics. Secondly, the use of phase field analysis generated interface solute concentrations are used as an input from accompanying work by the authors. The results provide a linkage between the interface character of cemented carbide microstructures and their properties, for example with respect to compressive strength, fracture toughness and wear resistance. The results demonstrate the obvious importance of interface character and properties with respect to resulting material properties, and describe a toolset towards systematic inclusion of these features in a materials-by-design type of material development. The methodology presents a multiscale formalism for carrying out performance and application driven evaluation and tailoring of composite interfaces and mesostructures, carried out on the basis of the emerging engineering material properties.