People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Immonen, Kirsi
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2025A skeletonization-based approach for individual fiber separation in tomography images of biocomposites
- 2024Effect of unbleached and bleached softwood cellulose pulp fibers on poly(lactic acid) propertiescitations
- 2024Biocomposites through foam-forming of long fiber suspensions
- 2023Effect of accelerated aging on properties of biobased polymer films applicable in printed electronicscitations
- 2022Recycling of 3D Printable Thermoplastic Cellulose-Compositecitations
- 2022Biocomposite modeling by tomographic feature extraction and synthetic microstructure reconstructioncitations
- 2022Novel Cellulose based Composite Material for Thermoplastic processing
- 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronicscitations
- 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronicscitations
- 2021Thermoplastic Cellulose-Based Compound for Additive Manufacturingcitations
- 2020Feasibility of foam forming technology for producing wood plastic compositescitations
- 2020Impact of stone ground 'V-fines' dispersion and compatibilization on polyethylene wood plastic composites
- 2020Impact of stone ground 'V-fines' dispersion and compatibilization on polyethylene wood plastic composites
- 2020Poly(lactic acid)/pulp fiber compositescitations
- 2020Poly(lactic acid)/pulp fiber composites:The effect of fiber surface modification and hydrothermal aging on viscoelastic and strength propertiescitations
- 2019Material sorting using hyperspectral imaging for biocomposite recycling
- 2018Modelling of hygroexpansion in birch pulp - PLA composites
- 2018Modelling of hygroexpansion in birch pulp - PLA composites:A numerical approach based on X-ray micro-tomography
- 2018Totally bio-based, high-performance wood fibre biocomposites
- 2017Effects of Surfactants on the Preparation of Nanocellulose-PLA Compositescitations
- 2016Predicting stiffness and strength of birch pulp : polylactic acid compositescitations
- 2016Time-resolved X-ray microtomographic measurement of water transport in wood-fibre reinforced composite materialcitations
- 2016Highly porous fibre structures and biocomposites made of mixtures of wood, biopolymers and hemp
- 2016Predicting stiffness and strength of birch pulp:Polylactic acid compositescitations
- 2016Predicting stiffness and strength of birch pulp – Polylactic acid compositescitations
- 2015Improving mechanical properties of novel flax/tannin composites through different chemical treatmentscitations
- 2015Novel hybrid flax reinforced supersap composites in automotive applicationscitations
- 2011Potential of chemo- enzymatically modified CTMP in biocomposites
- 2011Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matricescitations
Places of action
Organizations | Location | People |
---|
document
Modelling of hygroexpansion in birch pulp - PLA composites
Abstract
Sustainable wood fiber based materials as wood plastic composites (WPCs) are promising alternatives to engineering plastics and/or glass fiber reinforced materials in the construction and automotive sectors. However, due to the poor bonds of hydrophilic wood fibers with the hydrophobic matrix, moisture content (MC) variations cause hygroexpansion and strength reduction in WPCs as well as moisture-induced creep in the final products. In this context, a better understanding of the microscale phenomena in WPCs is needed for the assessment of their material properties and image-based modelling represents a promising approach [1]. This work presents a FEM modelling based on X-ray computed micro-tomography for the evaluation of hygroexpansion in polylactic acid (PLA) composites reinforced by birch pulp fibers. Water absorption tests were conducted on dog bone tensile test specimens containing 40% fibers to measure the levels of water uptake reached after 1 day, 7 days and 28 days immersion. Micro-tomographic images were acquired from a cylindrical sample of approximately 2 mm diameter cut from the middle web of the dry composite specimen [2]. Two-dimensional FEM meshes were created by using the oof2 open source software (https://www.ctcms.nist.gov/oof/oof2/) and FEM analyses of representative volume elements (RVEs) were carried out by using Abaqus code. The elastic moduli of fibers was assumed to be a parabolic function of MC starting from the reference in dry state. The hygroexpansion was simulated by assigning moisture changes to the RVE and hygroexpansion coefficients to the matrix and in the directions of fibers. The results in terms of elastic moduli and hygroexpansion were found in agreement with the measurements at different levels of water uptake.