People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Xiaoying
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Growth of Carbon Nanofibers and Carbon Nanotubes by Chemical Vapour Deposition on Half-Heusler Alloys
- 2022Nanoindentation of multifunctional smart compositescitations
- 2022Microscopic testing of carbon fiber laminates with shape memory epoxy interlayercitations
- 2021Development of surfaces with antibacterial durability through combined S phase plasma hardening and athermal femtosecond laser texturingcitations
- 2020A study on the effect of ultrashort pulsed laser texturing on the microstructure and properties of metastable S phase layer formed on AISI 316L surfacescitations
- 2020Comparative Physical–Mechanical Properties Assessment of Tailored Surface-Treated Carbon Fibrescitations
- 2019Corrosion Behavior of Active-Screen Plasma Nitrided 17-4 PH (H1150D) Steel in H2S/CO2-Containing Environmentscitations
- 2019Corrosion behavior of active-screen plasma nitrided 17-4 PH (H1150D) steel in H2S/CO2 -containing environments
- 2017Development and microstructure characterization of single and duplex nitriding of UNS S31803 duplex stainless steelcitations
- 2017Susceptibility of Plasma nitrided 17-4 PH to sulfide stress sracking (SSC) in H2S-containing environments
- 2017Scratch test of active screen low temperature plasma nitrided AISI 410 martensitic stainless steelcitations
- 2017Carbon nanofibers functionalized with active screen plasmadeposited metal nanoparticles for electrical energy storage devicescitations
- 2017Improving tribological and anti-bacterial properties of titanium external fixation pins through surface ceramic conversioncitations
- 2015Development of low-friction and wear-resistant surfaces for low-cost Al hot stamping toolscitations
- 2014Cavitation erosion resistance of active screen-low temperature plasma nitrided AISI 410 martensitic stainless steel
- 2014Cavitation erosion resistance and wear mechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steelcitations
- 2014Development of duplex high temperature gas nitriding and low temperature plasma nitriding surface treatments for UNS S31803 duplex stainless steel
- 2011Synthesis and characterization of W reinforced carbon coatings produced by Combined Magnetron Sputtering and Ion Implantation techniquecitations
- 2009CrN-based wear resistant hard coatings for machining and forming toolscitations
- 2004Plasma nitriding of low alloy sintered steels
- 2001Duplex surface treatment of high strength Timetal 550 alloy towards high load-bearing capacitycitations
Places of action
Organizations | Location | People |
---|
document
Development of duplex high temperature gas nitriding and low temperature plasma nitriding surface treatments for UNS S31803 duplex stainless steel
Abstract
<p>Specimens of a UNS S31803 duplex stainless steel were (i) single low temperature plasma nitrided and (ii) high temperature gas nitrided, at 1200°C and low temperature plasma nitrided. Plasma nitriding treatments were carried out at 400°C by 20 h, in a 75%N<sub>2</sub>+25%H<sub>2</sub> atmosphere, duplex surface treatment. The microstructure of the as received material is composed by ferrite and austenitic stringers, aligned in the rolling direction. Light optical microscopy (LOM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron-backscattered diffraction (EBSD) were used to characterize the microstructure. The duplex surface treatment led to the formation of 550 μm thick fully austenitic layer at the surface of the specimens, by transformation of ferrite stringers, and the subsequent plasma nitriding led to the formation of a homogeneous expanded austenite layer, 1144 HV. The single plasma nitrided (LTPN) layer was composed by expanded ferrite (αn) and expanded austenite (γn), with microhardness of 1509 HV and 1362 HV, respectively.</p>