People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nemec, Petr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Surface functionalization of a chalcogenide IR photonic sensor by means of a polymer membrane for water pollution remediationcitations
- 2024Temperature-dependent optical functions of selected Ge-Sb-Se bulk chalcogenide glasses obtained by spectroscopic ellipsometrycitations
- 2024Rare earth doped chalcogenide waveguide for mid-IR luminescence
- 2022Germanium-antimony-selenium-tellurium thin films: Clusters formation by laser ablation and comparison with clusters from mixtures of elements
- 2022Tailoring of Multisource Deposition Conditions towards Required Chemical Composition of Thin Filmscitations
- 2022Improvement of the sensitivity of chalcogenide-based infrared sensors dedicated to the in situ detection of organic molecules in aquatic environment
- 2021Germanium-antimony-selenium-tellurium thin films: Clusters formation by laser ablation and comparison with clusters from mixtures of elements
- 2021Laser ablation of Ga-Sb-Te thin films monitored with quadrupole ion trap time-of-flight mass spectrometry
- 2021Arsenic-Doped SnSe Thin Films Prepared by Pulsed Laser Depositioncitations
- 2019Ge-Sb-Te Chalcogenide Thin Films Deposited by Nanosecond, Picosecond, and Femtosecond Laser Ablationcitations
- 2018X-ray photoelectron spectroscopy analysis of Ge-Sb-Se pulsed laser deposited thin filmscitations
- 2017Infrared sensor for water pollution and monitoringcitations
- 2017Photostability of pulsed-laser-deposited AsxTe100-x (x=40, 50, 60) amorphous thin filmscitations
- 2017Co-sputtered amorphous Ge-Sb-Se thin films: Optical properties and structurecitations
- 2016Laser Desorption Ionization Time-of-Flight Mass Spectrometry of Glasses and Amorphous Films from Ge-As-Se Systemcitations
- 2015Laser Desorption Ionisation Time-of-Flight Mass Spectrometry of Chalcogenide Glasses from (GeSe2)100-x(Sb2Se3)x Systemcitations
- 2014Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin filmscitations
- 2014Laser desorption ionization time-of-flight mass spectrometry of erbium-doped Ga-Ge-Sb-S glasses.citations
- 2014Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glassescitations
- 2013RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy
- 2013Chalcogenide Glasses Developed for Optical Micro-sensor Devices
- 2013Ga-Ge-Te amorphous thin films fabricated by pulsed laser depositioncitations
- 2012Amorphous and crystallized Ge-Sb-Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopycitations
- 2011Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Filmscitations
- 2010Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser deposited thin filmscitations
- 2009Gallium-lanthanum-sulphide amorphous thin films prepared by pulsed laser depositioncitations
- 2009Infrared optical sensor for CO2 detectioncitations
- 2009Infrared optical sensor for CO2 detectioncitations
- 2009Erbium doped germanium based sulphide optical waveguide amplifi er for near- and mid-IRcitations
- 2008Chalcogenide coatings of Ge15Sb20S65 and Te20As30Se50citations
- 2007Chalcogenide waveguide for IR optical rangecitations
- 2007Chalcogenide waveguide for IR optical rangecitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Chalcogenide Glasses Developed for Optical Micro-sensor Devices
Abstract
International audience ; In the sensor field, chalcogenide glasses are well established membranes or thin film materials for potentiometric sensors which select heavy metal ions in various liquid media. Besides these potentiometric sensors, chalcogenide glasses have also specific optical characteristics such as a wide transmission window (0.4-20 µm) and which makes them easy to be used as optical fibers or in integrated optical devices for sensitive detection of chemical, biological or environmental variations. As part of this presentation, we will discuss our concerns in the past three years in the field of material sciences: chalcogenide glasses as materials of choice for optical sensor devices. We will describe the methods of chalcogenide glass synthesis and film fabrication and then, we will expound the development of optical sensors based on chalcogenide glasses.