People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Homolova, Viera
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Thermodynamic Assessment of the Fe-B System in the Ssol5 and User Databases
Abstract
Thermodynamic assessment of Fe-B system, including phase diagram, Gibbs energy, enthalpy, heat capacity and activity, was performed in the ThermoCalc software ver. 4.1 (Sweden). T wo databases were used: the commercia l SSOL5 database for solid solutions (substitutional approach) and the USER made database based on work of T. Van Rompaey et al. (intersticial approach). Results obtained were compared with experimental data gathered from work of M. Van Ende et al. In low boron regime the curve of the Fe-B phase diagram is represented more re liable in the USER database. However, te mperatures of the phase transformations are calculated with more accuracy in the SSOL5 database. For boron content higher than 0.3 mole fraction phase transformation temperatures are better assessed in the USER database, except for melting point of the Fe2B phase. Gibbs energy, enthalpy and heat capacity of the FeB and the Fe2B are difficult to evaluate becauseexperimental data are spread and inaccurate. Activities of iron and boron in liquid Fe-B alloy, calculated at selected temperatures, are almost identical for both databases.