Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sauviac, Bruno

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Measurement of Dielectric and Magnetic Constants of Ferrofluid-Doped Sol-Gels by a Resonant Cavity Methodcitations

Places of action

Chart of shared publication
Royer, F.
1 / 2 shared
Blanc-Mignon, M.-F.
1 / 2 shared
Vincent, D.
1 / 2 shared
Arafat, O. B.
1 / 1 shared
Neveu, S.
1 / 3 shared
Mahamat, B. Mahamout
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Royer, F.
  • Blanc-Mignon, M.-F.
  • Vincent, D.
  • Arafat, O. B.
  • Neveu, S.
  • Mahamat, B. Mahamout
OrganizationsLocationPeople

article

Measurement of Dielectric and Magnetic Constants of Ferrofluid-Doped Sol-Gels by a Resonant Cavity Method

  • Royer, F.
  • Blanc-Mignon, M.-F.
  • Vincent, D.
  • Sauviac, Bruno
  • Arafat, O. B.
  • Neveu, S.
  • Mahamat, B. Mahamout
Abstract

International audience ; Materials with specific electromagnetic properties are increasingly used for the realization of passive components. Therefore, electromagnetic characterization is a priority to know these materials properties. This study focuses on the electromagnetic characterization of 10 nm maghemite ferrofluid doped sol-gel using a resonant cavity method. We deposited the sol-gel by dipping/removal on an alumina substrate in order to make measurements on the cavity to determine the complex permittivity and permeability. Two studies were carried out; the first consisted in varying the doped sol-gel thickness of layers of the same concentration in the realization of samples; and the second consisted in varying the volume concentration of ferrofluid according to the matrix dimensions. The first study showed that the dielectric constants do not vary with the thickness of the magnetic sol-gel layers. In the second study, measurements also showed that the gyromagnetic resonance is the same for all samples regardless of the ferrofluid volume concentration.

Topics
  • impedance spectroscopy
  • dielectric constant
  • permeability