People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Szwajka, Krzysztof
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2025Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures
- 2024Analysis of the Microstructure and Mechanical Performance of Resistance Spot-Welding of Ti6Al4V to DP600 Steel Using Copper/Gold Cold-Sprayed Interlayerscitations
- 2024Effect of Countersample Coatings on the Friction Behaviour of DC01 Steel Sheets in Bending-under-Tension Friction Testscitations
- 2024Application of categorical boosting to modelling the friction behaviour of DC05 steel sheets in strip drawing testcitations
- 2024Analysis of the friction performance of deep-drawing steel sheets using network modelscitations
- 2024The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process
- 2024Analysis of Influence of Coating Type on Friction Behaviour and Surface Topography of DC04/1.0338 Steel Sheet in Bending Under Tension Friction Test
- 2024Analysis of Coefficient of Friction of Deep-Drawing-Quality Steel Sheets Using Multi-Layer Neural Networkscitations
- 2023Pressure-Assisted Lubrication of DC01 Steel Sheets to Reduce Friction in Sheet-Metal-Forming Processescitations
- 2023Assessment of the Tribological Performance of Bio-Based Lubricants Using Analysis of Variancecitations
- 2023An Investigation into the Friction of Cold-Rolled Low-Carbon DC06 Steel Sheets in Sheet Metal Forming Using Radial Basis Function Neural Networkscitations
- 2022The Use of Non-Edible Green Oils to Lubricate DC04 Steel Sheets in Sheet Metal Forming Processcitations
- 2022Analysis of the Friction Mechanisms of DC04 Steel Sheets in the Flat Strip Drawing Testcitations
- 2022Frictional Characteristics of Deep-Drawing Quality Steel Sheets in the Flat Die Strip Drawing Testcitations
Places of action
Organizations | Location | People |
---|
article
Assessment of the Tribological Performance of Bio-Based Lubricants Using Analysis of Variance
Abstract
<jats:p>The purpose of this article is to determine the coefficient of friction of a DC04 steel sheet using a specially designed flat-die strip drawing test. Four different bio-based lubricants, edible (sunflower and rape-seed) and non-edible (karanja and moringa) were used in the study. The experiments were carried out for different contact pressure values. The as‐received specimens were pre‐strained with strains of 7, 14, and 21%. The values of the coefficient of friction as a ratio of the friction force to the normal force were determined. The influence of the viscosity of the lubricant and the contact pressure on the value of the coefficient of friction has been investigated using ANOVA. A tendency to a decrease in the coefficient of friction with increasing contact pressure was observed. Significance results obtained after the ANOVA analysis confirmed the influence of normal pressure and oil viscosity on the value of the coefficient of friction. At the same time, the hypothesis about the influence of the sheet pre-straining on the value of the coefficient of friction was not confirmed by the significant interactions.</jats:p>