Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

M., V.

  • Google
  • 1
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023A Comparative Evaluation of the Effect of Different Beverages on Colour Stability and Surface Micromorphology of Nanocomposite Restorative Material.3citations

Places of action

Chart of shared publication
Faseeha Haqh, M.
1 / 1 shared
Chatterjee, S.
1 / 9 shared
Sahu, S.
1 / 2 shared
Singh, V.
1 / 6 shared
Mustafa Khan, A.
1 / 1 shared
Singh, T.
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Faseeha Haqh, M.
  • Chatterjee, S.
  • Sahu, S.
  • Singh, V.
  • Mustafa Khan, A.
  • Singh, T.
OrganizationsLocationPeople

article

A Comparative Evaluation of the Effect of Different Beverages on Colour Stability and Surface Micromorphology of Nanocomposite Restorative Material.

  • Faseeha Haqh, M.
  • Chatterjee, S.
  • M., V.
  • Sahu, S.
  • Singh, V.
  • Mustafa Khan, A.
  • Singh, T.
Abstract

<h4>Aim</h4>This investigation was carried out to evaluate the color stability of a nanocomposite restorative material and the erosive potential of carbonated soft drinks (Coca-Cola; The Coca-Cola Company, Atlanta, Georgia, United States) and packaged orange juice (Real Fruit Power Orange; Dabur Ltd, Ghaziabad, Uttar Pradesh, India) on its surface micromorphology.<h4>Materials and methods</h4>Sixty discs (2mm thick and 10mm diameter) of nanocomposite material (Herculite Précis; KaVo Kerr, Brea, California, United States) were prepared using a silicon cylindrical mold. Initially, all the specimens were stored in artificial saliva in five Petri dishes; 12 specimens in each dish. In the Petri dishes, the specimens were immersed in the respective beverages once or twice a day. Before and after each immersion, the specimens were stored in artificial saliva at room temperature. Artificial saliva was changed each day, i.e., every 24 hours. The whole procedure was carried out for three months and then evaluated for color stability using a spectrophotometer and surface micromorphology using a scanning electron microscope. Now, the exposure of specimens to aerated drinks (Coca-Cola) and packaged orange juice (Real Orange) was put to a halt, and specimens were kept continuously in artificial saliva. This procedure was carried out for one month and then evaluated for color stability. The information was analyzed using PASW Statistics for Windows, Version 18.0 (Released 2009; SPSS Inc., Chicago, United States). A p-value of 0.05 was considered significant.<h4>Results</h4>The p-value after three months, which is < 0.001 (p<0.05) indicates that the mean color difference values for groups I, II, III, IV, and V show a statistically significant change between the five groups, and similarly, the p-value after one month, which is < 0.001 (p<0.05) indicates that the mean color difference values for groups I, II, III, IV, and V show a statistically significant change between the five groups. Specimens immersed in the carbonated drink twice a day showed clinically more color change than packaged orange juice and artificial saliva on the composite restorative material. Coca-Cola, an aerated drink, was shown to have a higher erosive potential on the composite restorative material than Real Fruit Power Orange and fake saliva.<h4>Conclusion</h4>The findings are consistent with the hypothesis that repeated exposure to carbonated beverages (such as Coca-Cola and packaged juice) degrades the surface qualities of dental restorations.

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • Silicon