Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alkanani, Thamir

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Multiple propane gas burn rates procedure to determine accuracy and linearity of indirect calorimetry systems: an experimental assessment of a method3citations

Places of action

Chart of shared publication
Basset, Fabien
1 / 1 shared
Kelly, Liam P.
1 / 1 shared
Atkinson, Matthew
1 / 1 shared
Ismail, Mohammad
1 / 4 shared
Alsubheen, Sanaa A.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Basset, Fabien
  • Kelly, Liam P.
  • Atkinson, Matthew
  • Ismail, Mohammad
  • Alsubheen, Sanaa A.
OrganizationsLocationPeople

article

Multiple propane gas burn rates procedure to determine accuracy and linearity of indirect calorimetry systems: an experimental assessment of a method

  • Basset, Fabien
  • Alkanani, Thamir
  • Kelly, Liam P.
  • Atkinson, Matthew
  • Ismail, Mohammad
  • Alsubheen, Sanaa A.
Abstract

<jats:sec><jats:title>Objective</jats:title><jats:p>Indirect calorimetry (IC) systems measure the fractions of expired carbon dioxide (F<jats:sub>e</jats:sub>CO<jats:sub>2</jats:sub>), and oxygen (F<jats:sub>e</jats:sub>O<jats:sub>2</jats:sub>) recorded at the mouth to estimate whole-body energy production. The fundamental principle of IC relates to the catabolism of high-energy substrates such as carbohydrates and lipids to meet the body’s energy needs through the oxidative process, which are reflected in the measured oxygen uptake rates (V̇O<jats:sub>2</jats:sub>) and carbon dioxide production rates (V̇CO<jats:sub>2</jats:sub>). Accordingly, it is important to know the accuracy and validity of V̇O<jats:sub>2</jats:sub>and V̇CO<jats:sub>2</jats:sub> measurements when estimating energy production and substrate partitioning for research and clinical purposes. Although several techniques are readily available to assess the accuracy of IC systems at a single point for V̇CO<jats:sub>2</jats:sub> and V̇O<jats:sub>2</jats:sub>, the validity of such procedures is limited when used in testing protocols that incorporate a wide range of energy production (<jats:italic>e.g.</jats:italic>, basal metabolic rate and maximal exercise testing). Accordingly, we built an apparatus that allowed us to manipulate propane burn rates in such a way as to assess the linearity of IC systems. This technical report aimed to assess the accuracy and linearity of three IC systems using our in-house built validation procedure.</jats:p></jats:sec><jats:sec><jats:title>Approach</jats:title><jats:p>A series of trials at different propane burn rates (PBR) (<jats:italic>i.e.</jats:italic>, 200, 300, 400, 500, and 600 mL min<jats:sup>−1</jats:sup>) were run on three IC systems: Sable, Moxus, and Oxycon Pro. The experimental values for V̇O<jats:sub>2</jats:sub> and V̇CO<jats:sub>2</jats:sub> measured on the three IC systems were compared to theoretical stoichiometry values.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>A linear relationship was observed between increasing PBR and measured values for V̇O<jats:sub>2</jats:sub>and V̇CO<jats:sub>2</jats:sub> (99.6%, 99.2%, 94.8% for the Sable, Moxus, and Jaeger IC systems, respectively). In terms of system error, the Jaeger system had significantly (<jats:italic>p</jats:italic> &lt; 0.001) greater V̇O<jats:sub>2</jats:sub>(mean difference (<jats:italic>M)</jats:italic> = −0.057, standard error (<jats:italic>SE)</jats:italic> = 0.004), and V̇CO<jats:sub>2</jats:sub>(<jats:italic>M</jats:italic> = −0.048, <jats:italic>SE</jats:italic> = 0.002) error compared to either the Sable (V̇O<jats:sub>2</jats:sub>, <jats:italic>M</jats:italic> = 0.044, <jats:italic>SE</jats:italic> = 0.004; V̇CO<jats:sub>2</jats:sub>, <jats:italic>M</jats:italic> = 0.024, <jats:italic>SE</jats:italic> = 0.002) or the Moxus (V̇O2, <jats:italic>M</jats:italic> = 0.046, <jats:italic>SE</jats:italic> = 0.004; V̇CO<jats:sub>2</jats:sub>, <jats:italic>M</jats:italic> = 0.025, <jats:italic>SE</jats:italic> = 0.002) IC systems. There were no significant differences between the Sable or Moxus IC systems.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The multiple PBR approach permitted the assessment of linearity of IC systems in addition to determining the accuracy of fractions of expired gases.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • Carbon
  • Oxygen
  • size-exclusion chromatography
  • calorimetry
  • ion chromatography