People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Latko-Durałek, Paulina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Using 3D printing technology to monitor damage in GFRPs
- 2024Electrically conductive and flexible filaments of hot melt adhesive for the fused filament fabrication process
- 2023Effect of carbon nanoparticles on selected properties of hot melt adhesives
- 2023Experimental analysis of the influence of thermoplastic veils doped with nanofillers on the thermal properties of fibre-reinforced composites
- 2023Selected properties of electrically conductive hot melt ethylene-vinyl acetate adhesives
- 2022Electrically Conductive Adhesive Based on Thermoplastic Hot Melt Copolyamide and Multi-Walled Carbon Nanotubescitations
- 2021Fibers of Thermoplastic Copolyamides with Carbon Nanotubes for Electromagnetic Shielding Applicationscitations
- 2020Characterization of thermoplastic nonwovens of copolyamide hot melt adhesives filled with carbon nanotubes produced by melt-blowing methodcitations
- 2020Effect of the areal weight of CNT-doped veils on CFRP electrical propertiescitations
- 2019Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubescitations
- 2019Thermal, Rheological and Mechanical Properties of PETG/rPETG Blendscitations
- 2018Nonwovens fabrics with carbon nanotubes used as a interleaves in CFRP
- 2018Improvement of CFRP electrical conductivity by applying nano enabled products containing carbon nanotubes
- 2018Comparison of properties of CFRPs containing nonwoven fabrics with carbon nanotubes, fabricated by prepreg and liquid technology
- 2018Mechanical Properties of PETG Fibres and Their Usage in Carbon Fibres/Epoxy Composite Laminatescitations
- 2018Nonwoven fabrics with carbon nanotubes used as interleaves in CFRPcitations
- 2018Processing and characterization of thermoplastic nanocomposite fibers of hot melt copolyamide and carbon nanotubescitations
- 2018Hot-melt adhesives based on co-polyamide and multiwalled carbon nanotubescitations
- 2014Thermoplastic nanocomposites with enhanced electrical conductivity
Places of action
Organizations | Location | People |
---|
document
Experimental analysis of the influence of thermoplastic veils doped with nanofillers on the thermal properties of fibre-reinforced composites
Abstract
Fibre-reinforced polymers (FRP) have significant advantages over metals due to their excellent specific mechanical properties. However, their range of application is often limited by insufficient thermal properties. In order to expand the range of applications of thermoplastic composites in particular, it is necessary to improve their thermal properties, especially thermal conductivity. The use of novel veils doped with nanofillers offers a high potential for tailor-made modifications of composite properties depending on the filler used and the composite design. However, the integration of thermoplastic veils with nanofillers into composite structures is associated with some fundamental challenges: modification of the composite design and thus the change of material properties as well as change of the manufacturing process and the process parameters. To investigate these phenomena, polyphenylene sulphide (PPS) veils doped with multi-walled carbon nanotubes (MWCNTs) were integrated into carbon fibre-reinforced polymers (CFRP) with acrylic resin system. For this purpose, various lay-up setups of the fibre reinforcement and the modified veils were defined and the composite structures were fabricated using the wet compression moulding (WCM) process. The influence of the process parameters on the infiltration and consolidation of the composite structure with acrylic resin was investigated. The composite structures were evaluated using non-destructive testing methods such as ultrasonic as well as microscopic observations. In addition, extensive thermal and mechanical tests were carried out to determine the influence of the integrated veils on the composite properties and compared with reference structures. As a result, a basis for a model-based and integrated material development process was created.