Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grosse, Charlotte

  • Google
  • 1
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Influence of water and humidity on wood modification with lactic acid14citations

Places of action

Chart of shared publication
Thévenon, Marie France
1 / 1 shared
Gérardin, Philippe
1 / 10 shared
Noël, Marion
1 / 1 shared
Rautkari, Lauri
1 / 29 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Thévenon, Marie France
  • Gérardin, Philippe
  • Noël, Marion
  • Rautkari, Lauri
OrganizationsLocationPeople

article

Influence of water and humidity on wood modification with lactic acid

  • Thévenon, Marie France
  • Gérardin, Philippe
  • Noël, Marion
  • Grosse, Charlotte
  • Rautkari, Lauri
Abstract

<p>Impregnation of dry wood with pure lactic acid oligomers (OLAs) followed by heat treatment confers promising properties to wood because of OLA's good diffusion, in-situ polymerization and persistence in cell walls. Treatment provides drastic reduction of the equilibrium moisture content, high dimensional stability and good durability. The presence of water during treatment has been evaluated. Curing of OLA impregnated dry wood in humid atmosphere leads to a strong and global degradation of the material. OLA treatment of wet wood only impacts the water leaching rate negatively. Treatment of dry wood with OLA diluted in water additionally decreases the biological resistance and is not efficient for decreasing hygroscopicity. Treatment of dry wood with lactic acid solution leads to a lower polymerization level but confers good properties.</p>

Topics
  • impedance spectroscopy
  • leaching
  • durability
  • wood
  • curing
  • in-situ polymerization