People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mueller, Maik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Creep characterization of lead-free solder alloys over an extended temperature range used for fatigue modeling
- 2023Temperature-dependent Creep Characterization of Lead-free Solder Alloys Using Nanoindentation for Finite Element Modelingcitations
- 2022Corrosion study on Cu/Sn-Ag solid-liquid interdiffusion microbumps by salt spray testing with 5 wt.% NaCl solutioncitations
- 2020Grain Structure Analysis of Cu/SiO2 Hybrid Bond Interconnects after Reliability Testingcitations
- 2020Morphologies of Primary Cu6Sn5 and Ag3Sn Intermetallics in Sn–Ag–Cu Solder Ballscitations
- 2018Morphology Variations of Primary Cu6Sn5 Intermetallics in Lead-Free Solder Ballscitations
- 2018Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integrationcitations
- 2013Microstructure investigation of Cu/SnAg solid-liquid interdiffusion interconnects by Electron Backscatter Diffractioncitations
- 2012Effects of bonding pressure on quality of SLID interconnectscitations
- 2011Solidification processes in the Sn-rich part of the SnCu systemcitations
- 2010Microstructure Characterization Of Lead‐Free Solders Depending On Alloy Compositioncitations
- 2010Metallographic preparation of the SnAgCu solders for optical microscopy and EBSD Investigationscitations
Places of action
Organizations | Location | People |
---|
article
Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integration
Abstract
This study presents the results for Cu/In bonding based on the solid–liquid interdiffusion (SLID) principle for fine-pitch interconnects in three-dimensional integration. The microbumps were fabricated on Si wafers (55 µm pitch, 25 µm top bump diameter, 35 µm bottom bump diameter). In was electroplated directly on Cu only on the top die microbumps. Two different In thicknesses were manufactured (3 and 5 µm). The interconnects were successfully fabricated at a bonding temperature of 170 °C. High temperature storage was carried out at 150 and 200 °C for different times between 2 and 72 h directly after the interconnect formation in order to investigate the temperature stability. The microstructure was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The intermetallic compound (IMC) found in the microbumps after electroplating was CuIn2. The intermetallic interlayer consists of Cu11In9 and a thin layer of Cu2In after bonding and isothermal storage.