Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Byranvand, M. Malekshahi

  • Google
  • 2
  • 14
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells32citations
  • 2012Influence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cellscitations

Places of action

Chart of shared publication
Richards, Bryce S.
1 / 23 shared
Hossain, I. M.
1 / 2 shared
Schwenzer, J. A.
1 / 1 shared
Trouillet, V.
1 / 7 shared
Khan, M. R.
1 / 2 shared
Lahann, J.
1 / 4 shared
Ternes, S.
1 / 1 shared
Eliwi, A. Alrhman
1 / 1 shared
Farooq, A.
1 / 3 shared
Behboodi-Sadabad, F.
1 / 1 shared
Welle, Alexander
1 / 47 shared
Paetzold, Ulrich Wilhelm
1 / 19 shared
Fatholahi, L.
1 / 1 shared
Kharat, A. Nemati
1 / 1 shared
Chart of publication period
2020
2012

Co-Authors (by relevance)

  • Richards, Bryce S.
  • Hossain, I. M.
  • Schwenzer, J. A.
  • Trouillet, V.
  • Khan, M. R.
  • Lahann, J.
  • Ternes, S.
  • Eliwi, A. Alrhman
  • Farooq, A.
  • Behboodi-Sadabad, F.
  • Welle, Alexander
  • Paetzold, Ulrich Wilhelm
  • Fatholahi, L.
  • Kharat, A. Nemati
OrganizationsLocationPeople

article

Influence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells

  • Byranvand, M. Malekshahi
  • Fatholahi, L.
  • Kharat, A. Nemati
Abstract

A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with electrolyte and counter electrode. The prepared films were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Photovoltaic parameters like short circuit current (Isc), open circuit voltage (Voc), fill factor (FF) and power conversion efficiency (η) were evaluated for fabricated cells. The cell formed with a TiO2 film of 14μm thickness reached the best performance. 2012 JNS All rights reserved

Topics
  • polymer
  • scanning electron microscopy
  • atomic force microscopy
  • casting
  • power conversion efficiency
  • Ruthenium