Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Giese-Hinz, Johannes

  • Google
  • 2
  • 4
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Mechanical and chemical analysis of structural silicone adhesives with the influence of artificial aging14citations
  • 2016Experimental and Numerical Study on Glass Stresses and Shear Deformation of Long Adhesive Joints in Timber-Glass Composites4citations

Places of action

Chart of shared publication
Louter, Pieter Christiaan
1 / 1 shared
Christiane, Dr. Kothe
1 / 9 shared
Weller, Bernhard
2 / 27 shared
Nicklisch, Felix
1 / 9 shared
Chart of publication period
2021
2016

Co-Authors (by relevance)

  • Louter, Pieter Christiaan
  • Christiane, Dr. Kothe
  • Weller, Bernhard
  • Nicklisch, Felix
OrganizationsLocationPeople

document

Experimental and Numerical Study on Glass Stresses and Shear Deformation of Long Adhesive Joints in Timber-Glass Composites

  • Nicklisch, Felix
  • Giese-Hinz, Johannes
  • Weller, Bernhard
Abstract

This study assesses the shear strength of long adhesive joints on mid-size specimens to resemble virtually a life-size situation in a typical timber-glass composite element. The specimens comprise a rectangular glass pane which is adhesively bonded along its vertical edges onto timber posts. The study focuses on three different adhesives ranging from flexible silicones to viscoplastic epoxies with a high stiffness. In the experiment, the adhesive joints are stressed in longitudinal shear and loaded until failure.The experiment is simulated using a numerical model of the specimen. The joint is described by basic material models taking into account linear or bilinear behavior of the adhesive material. The corresponding material properties of the adhesives were derived from uniaxial tensile tests on the cured adhesive. The stiff adhesive causes high stress concentrations close to the edge where the load is applied. More flexible joints lead to a more homogenous distribution since the shear loading result in higher compressive stresses in the lower parts of the glass pane. Finally, we compare the results from the experiment and the numerical simulation by means of glass stresses and shear deformation of the adhesive bond line. It can be shown that bilinear constitutive equations are an adequate approximation of the adhesive to determine the glass stresses in the pane. However, the deformations could not be reproduced for all adhesives in the same accuracy than the stresses.

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • glass
  • glass
  • strength
  • composite
  • Silicon