People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chromiński, Witold
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Albumin suppresses oxidation of Ti-Nb alloy in the simulated inflammatory environment
- 2021Microstructure, Texture and Mechanical Properties of Mg-6Sn Alloy Processed by Differential Speed Rollingcitations
- 2019Investigation of different severe plastic deformation methods effect on Ti13Nb13Zr
- 2019Tribological behavior of a hydrostatically extruded ultra-fine grained Ti-13Nb-13Zr alloycitations
- 2019The importance of microstructural heterogeneities in the work hardening of ultrafine-grained aluminum, studied by in-situ TEM straining and mechanical testscitations
- 2018Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusioncitations
- 2018Mechanisms of plastic deformation in ultrafine-grained aluminium – In-situ and ex-post studiescitations
- 2017Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Propertiescitations
- 2017Microstructure and Texture Evolutions of Biomedical Ti-13Nb-13Zr Alloy Processed by Hydrostatic Extrusioncitations
- 2017Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusioncitations
- 2017Accumulation and mechanism of the fatigue damage for a nickel based superalloy
- 2017Evaluation of mechanical properties and anisotropy of ultra-fine grained 1050 aluminum sheets produced by incremental ECAPcitations
- 2016Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformationcitations
- 2016Incremental ECAP as a method to produce ultrafine grained aluminium platescitations
- 2015Microstructure evolution in aluminium 6060 during Incremental ECAP
- 2015Efficient method of producing ultrafine grained non-ferrous metals
- 2015Grain refinement in technically pure aluminium plates using incremental ECAP processingcitations
- 2014Enhancement of mechanical properties of biocompatible Ti-45Nb alloy by hydrostatic extrusioncitations
- 2014Incremental ECAP as a novel tool for producing ultrafine grained aluminium platescitations
Places of action
Organizations | Location | People |
---|
article
Investigation of different severe plastic deformation methods effect on Ti13Nb13Zr
Abstract
<p>Titanium and titanium alloys are attractive biomedical materials due to their lower young's modulus, good mechanical properties such as sufficient strength and biological compatibilities. In this experimental study near beta Ti13Nb13Zr (TNZ) was processed with Equal Angular Channel Pressing (ECAP) and Hydrostatic (HE) extrusion in order to obtain ultrafine grained biomaterials. With these two techniques efficiency were compared for TNZ with its mechanical and microstructural properties. After ECAP of TNZ the grains were observed to be more granular than HE processed Ti13Nb13Zr due to the rotations in the subsequent passes. For the ECAP procedure final grain size was measured as 410 nm. HE applied TNZ specimen had a lamellar structure with 80 nm thickness. For ECAPed TNZ the maximum tensile strength increased only 60 MPA which equals 1.1 times of initial state. HE applied ultrafine grained TNZ maximum mechanical strength was nearly 1.41 times higher than initial state.</p>