People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bańkowski, Wojciech
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Analysis of selected mechanical properties of mineral-cement-emulsion mixtures (MCE)citations
- 2018Design and verification of bituminous mixtures with the increased content of reclaimed asphalt pavementcitations
- 2017Thermal and fatigue evaluation of asphalt mixtures containing RAP treated with a bio-agentcitations
Places of action
Organizations | Location | People |
---|
article
Analysis of selected mechanical properties of mineral-cement-emulsion mixtures (MCE)
Abstract
In recent years mineral-cement-emulsion (MCE) mixtures have been increasingly used in rehabilitation and reconstruction of pavements. The material gains popularity due to the fact that it enables rational and ecological reuse of reclaimed material from old bituminous pavements, including material containing tar binders. Testing of basic properties of mineral-cement-emulsion mixtures – such as air void content, indirect tensile strength or stiffness modulus – enables determination of the required proportion of added new aggregate and the content of binding agents used. While such tests are sufficient at the stage of MCE mixture design, they do not enable wider analysis of the behavior of the material – particularly of its future performance in pavement structure. This paper presents advanced testing of MCE mixtures, encompassing tests that reflect performance of the material in pavement. Properties that were determined in order to better understand the character of behavior of MCE mixtures included: fracture parameters in semi-circular bending (SCB) test, stiffness moduli in SPT device and fatigue characteristics. The performed tests provide better insight into behavior of MCE mixtures in pavement structures and enable formulation of useful conclusions for MCE mixture design.