People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gubicza, Jeno
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Modification of the Tensile Performance of an Extruded ZK60 Magnesium Alloy with the Addition of Rare Earth Elementscitations
- 2022Machine Learning-Based Characterization of the Nanostructure in a Combinatorial Co-Cr-Fe-Ni Compositionally Complex Alloy Filmcitations
- 2022Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion
- 2022Combinatorial Study of Phase Composition, Microstructure and Mechanical Behavior of Co-Cr-Fe-Ni Nanocrystalline Film Processed by Multiple-Beam-Sputtering Physical Vapor Depositioncitations
- 2022Influence of Degree of Severe Plastic Deformation on Thermal Stability of an HfNbTiZr Multi-Principal Element Alloy Processed by High-Pressure Torsioncitations
- 2022On the enhanced hardening ability and plasticity mechanisms in a novel Mn-added CoCrNi medium entropy alloy during high-pressure torsion
- 2021Microstructure, Hardness, and Elastic Modulus of a Multibeam-Sputtered Nanocrystalline Co-Cr-Fe-Ni Compositional Complex Alloy Filmcitations
Places of action
Organizations | Location | People |
---|
document
On the enhanced hardening ability and plasticity mechanisms in a novel Mn-added CoCrNi medium entropy alloy during high-pressure torsion
Abstract
Microstructure and texture evolution during high-pressure torsion (HPT) of a novel Mn-added CoCrNi medium entropy alloy (Co33Ni33Cr19Mn15) is investigated for the first time. The alloy exhibited a rapid rise in hardness at relatively low shear strains (γ≤20). It is attributed to an extensive dislocation activity to achieve saturation in dislocation density of ~1016 m−2, combined TWIP and TRIP effects and microstructural refinement. At higher shear strain, hardness increased at much reduced rates owing to saturation of dislocation density, twin fault probability and the TRIP effect, besides continued grain refinement for severe nano-structuring led to subsequent strengthening. The FCC phase showed remarkable stability except a small degree of initial deformation-induced HCP martensitic transformation in an early stage of HPT. The ideal shear texture components were observed at low shear strain, and these continued to evolve up to 5 turns of HPT processing. For similar HPT processing conditions, the studied alloy showed superior hardness (~650 Hv) compared to a wide spectrum of FCC materials, which is ascribed to a combination of the strengthening mechanisms of Taylor hardening, the TRIP and TWIP effects and Hall-Petch strengthening resulting from the nano-structured grains having an average size of ~35 nm.