Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kishore, Kaushal

  • Google
  • 3
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsioncitations
  • 2022On the enhanced hardening ability and plasticity mechanisms in a novel Mn-added CoCrNi medium entropy alloy during high-pressure torsioncitations
  • 2021On prominent TRIP effect and non-basal slip in a TWIP high entropy alloy during high-pressure torsion processingcitations

Places of action

Chart of shared publication
Chowdhury, Subham
1 / 1 shared
Pham, Tran Hung
3 / 4 shared
Gubicza, Jeno
2 / 7 shared
Ghosh, Mainak
1 / 1 shared
Gubicza, J.
1 / 11 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Chowdhury, Subham
  • Pham, Tran Hung
  • Gubicza, Jeno
  • Ghosh, Mainak
  • Gubicza, J.
OrganizationsLocationPeople

document

On the enhanced hardening ability and plasticity mechanisms in a novel Mn-added CoCrNi medium entropy alloy during high-pressure torsion

  • Pham, Tran Hung
  • Gubicza, Jeno
  • Kishore, Kaushal
Abstract

Microstructure and texture evolution during high-pressure torsion (HPT) of a novel Mn-added CoCrNi medium entropy alloy (Co33Ni33Cr19Mn15) is investigated for the first time. The alloy exhibited a rapid rise in hardness at relatively low shear strains (γ≤20). It is attributed to an extensive dislocation activity to achieve saturation in dislocation density of ~1016 m−2, combined TWIP and TRIP effects and microstructural refinement. At higher shear strain, hardness increased at much reduced rates owing to saturation of dislocation density, twin fault probability and the TRIP effect, besides continued grain refinement for severe nano-structuring led to subsequent strengthening. The FCC phase showed remarkable stability except a small degree of initial deformation-induced HCP martensitic transformation in an early stage of HPT. The ideal shear texture components were observed at low shear strain, and these continued to evolve up to 5 turns of HPT processing. For similar HPT processing conditions, the studied alloy showed superior hardness (~650 Hv) compared to a wide spectrum of FCC materials, which is ascribed to a combination of the strengthening mechanisms of Taylor hardening, the TRIP and TWIP effects and Hall-Petch strengthening resulting from the nano-structured grains having an average size of ~35 nm.

Topics
  • density
  • impedance spectroscopy
  • grain
  • phase
  • hardness
  • dislocation
  • texture
  • plasticity