People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stampfl, Catherine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Crystal orientation-dependent tensile mechanical behavior and deformation mechanisms of zinc-blende ZnSe nanowires
- 2022Ab Initio Investigation of Covalently Immobilized Cobalt-Centered Metal-Organic Catalysts for CO2Reductioncitations
- 2021Modeling and Experimental Study of the Electron Transfer Kinetics for Non-ideal Electrodes Using Variable-Frequency Square Wave Voltammetrycitations
- 2017Detection of adsorbed transition-metal porphyrins by spin-dependent conductance of graphene nanoribboncitations
Places of action
Organizations | Location | People |
---|
document
Crystal orientation-dependent tensile mechanical behavior and deformation mechanisms of zinc-blende ZnSe nanowires
Abstract
rystal deformation mechanisms and mechanical behaviors in semiconductor nanowires (NWs), in particular ZnSe NWs, exhibit a strong orientation dependence. However, very little is known about tensile deformation mechanisms for different crystal orientations. Here, the dependence of crystal orientations on mechanical properties and deformation mechanisms of zinc-blende ZnSe NWs are explored using molecular dynamics simulations. We find that the fracture strength of [111]-oriented ZnSe NWs shows a higher value than that of [110] and [100]-oriented ZnSe NWs. Square shape ZnSe NWs show greater value in terms of fracture strength and elastic modulus compared to a hexagonal shape at all considered diameters. With increasing temperature, the fracture stress and elastic modulus exhibit a sharp decrease. It is observed that the {111} planes are the deformation planes at lower temperatures for the [100] orientation; conversely, when the temperature is increased, the {100} plane is activated and contributes as the second principal cleavage plane. Most importantly, the [110]-directed ZnSe NWs show the highest strain rate sensitivity compared to the other orientations due to the formation of many different cleavage planes with increasing strain rates. The calculated radial distribution function and potential energy per atom further validates the obtained results. This study is very important for the future development of efficient and reliable ZnSe NWs-based nanodevices and nanomechanical systems.