Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Piola Rizzante, Fabio Antonio

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Effects of Surface Treatments of Glass Fiber-Reinforced Post on Bond Strength to Root Dentine: A Systematic Reviewcitations

Places of action

Chart of shared publication
Sauro, Salvatore
1 / 16 shared
Khan, Abdul
1 / 1 shared
Panda, Saurav
1 / 1 shared
Zavattini, Angelo
1 / 1 shared
Lukomska-Szymanska, Monika
1 / 5 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Sauro, Salvatore
  • Khan, Abdul
  • Panda, Saurav
  • Zavattini, Angelo
  • Lukomska-Szymanska, Monika
OrganizationsLocationPeople

document

Effects of Surface Treatments of Glass Fiber-Reinforced Post on Bond Strength to Root Dentine: A Systematic Review

  • Piola Rizzante, Fabio Antonio
  • Sauro, Salvatore
  • Khan, Abdul
  • Panda, Saurav
  • Zavattini, Angelo
  • Lukomska-Szymanska, Monika
Abstract

The objective of this systematic review was to determine the influence of surface treatment of glass fiber posts on bond strength to dentine. Laboratory studies were searched in MEDLINE, PubMed, Embase, PubMed Central, Scopus, and Web of Science search engine. All authors interdependently screened all identified articles for eligibility. The included studies were assessed for bias. Because of the considerable heterogeneity of the studies, a meta-analysis was not possible. Twelve articles were found eligible and included in the review. An assessment of the risk of bias in the included studies provided a result that classified the studies as low, medium, and high risk of bias. The available evidence indicated that the coronal region of the root canal bonded better to the glass fiber post than apical regions. Phosphoric acid, hydrogen peroxide, and silane application enhance post's retentiveness. In light of the current evidence, surface treatment strategies increase the bond strength of glass fiber post to dentine. However, recommendations for standardized testing methods and reporting of future clinical studies are required to maintain clinically relevant information and to understand the effects of various surface treatment of glass fiber post and their bond strength with dentine walls of the root canal.

Topics
  • surface
  • glass
  • glass
  • strength
  • Hydrogen