Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shafiq, Muhammad Kashif

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Irregularity Measures of Subdivision Vertex-Edge Join of Graphscitations

Places of action

Chart of shared publication
Iqbal, Zahid
1 / 2 shared
Akhter, Shehnaz
1 / 1 shared
Aamir, Muhammad
1 / 15 shared
Zheng, Jialin
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Iqbal, Zahid
  • Akhter, Shehnaz
  • Aamir, Muhammad
  • Zheng, Jialin
OrganizationsLocationPeople

document

Irregularity Measures of Subdivision Vertex-Edge Join of Graphs

  • Iqbal, Zahid
  • Shafiq, Muhammad Kashif
  • Akhter, Shehnaz
  • Aamir, Muhammad
  • Zheng, Jialin
Abstract

The study of graphs and networks accomplished by topological measures plays an applicable task to obtain their hidden topologies. This procedure has been greatly used in cheminformatics, bioinformatics, and biomedicine, where estimations based on graph invariants have been made available for effectively communicating with the different challenging tasks. Irregularity measures are mostly used for the characterization of the nonregular graphs. In several applications and problems in various areas of research like material engineering and chemistry, it is helpful to be well-informed about the irregularity of the underline structure. Furthermore, the irregularity indices of graphs are not only suitable for quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) studies but also for a number of chemical and physical properties, including toxicity, enthalpy of vaporization, resistance, boiling and melting points, and entropy. In this article, we compute the irregularity measures including the variance of vertex degrees, the total irregularity index, the σ irregularity index, and the Gini index of a new graph operation.

Topics
  • impedance spectroscopy
  • toxicity