Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sade, M.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Effects of B2 nanoprecipitates on the phase stability and pseudoelastic behavior of Fe-Mn-Al-Ni shape memory alloyscitations

Places of action

Chart of shared publication
Malarria, Jorge
1 / 1 shared
Baruj, Alberto
1 / 4 shared
Medina, Judit
1 / 8 shared
Sobrero, Cesar Enrique
1 / 4 shared
Roca, Paulo Matías La
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Malarria, Jorge
  • Baruj, Alberto
  • Medina, Judit
  • Sobrero, Cesar Enrique
  • Roca, Paulo Matías La
OrganizationsLocationPeople

document

Effects of B2 nanoprecipitates on the phase stability and pseudoelastic behavior of Fe-Mn-Al-Ni shape memory alloys

  • Malarria, Jorge
  • Sade, M.
  • Baruj, Alberto
  • Medina, Judit
  • Sobrero, Cesar Enrique
  • Roca, Paulo Matías La
Abstract

Samples of a Fe-Mn36-Al15-Ni7.5 shape memory alloy were subjected to different thermal treatments at 200ºC (namely for 0 min, 10 min, 20 min and 3 h) in order to evaluate the evolution of the coherent precipitates related to the pseudoelastic behavior. After performing the thermal treatments, samples were studied by means of electrical resistivity in experiments aimed at evaluating the effect of precipitation on the martensitic transformation temperatures and at determining the possible effects of thermal cycling. Mechanical tests were performed to measure the degree of pseudoelastic recovery for each thermally treated sample. Evidences of pseudoelastic behavior were found even in samples subjected to a rather short treatment such as 20 min after three thermal cycles. Transmission electron microscopy (TEM) observations were performed in order to identify the distribution and size of B2 nano-precipitates after the various thermal treatments.

Topics
  • resistivity
  • phase
  • experiment
  • transmission electron microscopy
  • precipitate
  • precipitation
  • phase stability