People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Steenberge, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Impact of rubber content on average properties and distributions of high impact polystyrene by means of multiphase coupled matrix-based Monte Carlo
- 2024Surfactant-free peroxidase-mediated enzymatic polymerization of a biorenewable butyrolactone monomer via a green approach : synthesis of sustainable biobased latexescitations
- 2024Combining ternary phase diagrams and multiphase coupled matrix-based Monte Carlo to model phase dependent compositional and molar mass variations in high impact polystyrene synthesiscitations
- 2024Exploring the influence of polybutadiene content on high-impact polystyrene properties : a multiphase coupled matrix-based Monte Carlo approach
- 2023Surfactant-Free Peroxidase-Mediated Enzymatic Polymerization of a Biorenewable Butyrolactone Monomer via a Green Approach: Synthesis of Sustainable Biobased Latexes
- 2023Multi-angle evaluation of kinetic Monte-Carlo simulations as a tool to evaluate the distributed monomer composition in gradient copolymer synthesiscitations
- 2023Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis : unraveling the pathways to its monomer, dimers, and trimers formationcitations
- 2023Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis : unraveling the pathways to its monomer, dimers, and trimers formationcitations
- 2023Playing with process conditions to increase the industrial sustainability of poly(lactic acid)-based materialscitations
- 2023Comparing thermal degradation for fused filament fabrication (FFF) with chain or step-growth polymers
- 2022Identifying optimal synthesis protocols via the in silico characterization of (a)symmetric block and gradient copolymers with linear and branched chains
- 2022A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)scitations
- 2020Connecting polymer synthesis and chemical recycling on a chain-by-chain basis : a unified matrix-based kinetic Monte Carlo strategycitations
- 2020Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly(methyl methacrylate)citations
- 2019The relevance of multi‐injection and temperature profiles to design multi‐phase reactive processing of polyolefinscitations
- 2017How penultimate monomer unit effects and initiator choice influence ICAR ATRP of n-butyl acrylate and methyl methacrylatecitations
- 2015Model-based visualization and understanding of monomer sequence formation in the synthesis of gradient copoly(2-oxazoline)s on the basis of 2-methyl-2-oxazoline and 2-phenyl-2-oxazolinecitations
- 2015Model-based design of the polymer microstructure : bridging the gap between polymer chemistry and engineering
- 2015Model-based design of the polymer microstructure: bridging the gap between polymer chemistry and engineeringcitations
- 2014Fed-batch control and visualization of monomer sequences of individual ICAR ATRP gradient copolymer chainscitations
- 2012Linear gradient quality of ATRP copolymerscitations
Places of action
Organizations | Location | People |
---|
document
Surfactant-Free Peroxidase-Mediated Enzymatic Polymerization of a Biorenewable Butyrolactone Monomer via a Green Approach: Synthesis of Sustainable Biobased Latexes
Abstract
A green surfactant-free one-pot horseradish peroxidase-mediated enzymatic polymerization is successfully applied to produce a sustainable and thermally stable biobased high average molar mass poly(α-methylene-γ-butyrolactone) (PMBL) at ambient conditions in water for the first time. The initiation step required only very low concentrations of hydrogen peroxide and 2,4-pentanedione water-soluble initiator to generate the keto-enoxy radicals responsible for forming the primary latex particles. The polymer nanoparticles can be seen as monodisperse, and the biobased latexes are colloidally stable and likely stabilized by the adsorption of 2,4-pentanedione moieties on the particle surfaces. Polymerizations in air produced a 98% yield of PMBL after only 3 h, highlighting the relevance of molecular oxygen. An array of characterization techniques such as dynamic light scattering (DLS), Fourier transform infrared (FTIR), 1H, 13C, and HSQC two-dimensional (2D) nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and size-exclusion chromatography (SEC) are used to confirm the properties of the synthesized latexes. The PMBL exhibited high thermal stability, with only a 5% weight loss at 340 °C and a glass-transition temperature of 200 °C, which is double that of polymethyl methacrylate (PMMA). This research provides an interesting pathway for the synthesis of sustainable biobased latexes via enzymes in a green environment using just water at ambient conditions and the potential use of the polymer in high-temperature applications.