People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gustmann, Tobias
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Exploring the oxidation behavior of undiluted and diluted iron particles for energy storage: Mössbauer spectroscopic analysis and kinetic modeling
- 2023Characterization of Filigree Additively Manufactured NiTi Structures Using Micro Tomography and Micromechanical Testing for Metamaterial Material Modelscitations
- 2023Achieving exceptional wear resistance in a crack-free high-carbon tool steel fabricated by laser powder bed fusion without pre-heatingcitations
- 2022Controlling the Young’s modulus of a ß-type Ti-Nb alloy via strong texturing by LPBFcitations
- 2022Additively manufactured AlSi10Mg lattices – Potential and limits of modelling as-designed structurescitations
- 2022Additive Manufacturing of Binary Ni–Ti Shape Memory Alloys Using Electron Beam Powder Bed Fusion: Functional Reversibility Through Minor Alloy Modification and Carbide Formationcitations
- 2022Additive Manufacturing of Binary Ni–Ti Shape Memory Alloys Using Electron Beam Powder Bed Fusion: Functional Reversibility Through Minor Alloy Modification and Carbide Formation
- 2022Additive Manufacturing of Binary Ni–Ti Shape Memory Alloys Using Electron Beam Powder Bed Fusion: Functional Reversibility Through Minor Alloy Modification and Carbide Formation
- 2022In situ detection of cracks during laser powder bed fusion using acoustic emission monitoringcitations
- 2022Designing the microstructural constituents of an additively manufactured near β Ti alloy for an enhanced mechanical and corrosion responsecitations
- 2021Laser Powder Bed Fusion Processing of Fe-Mn-Al-Ni Shape Memory Alloy - On the Effect of Elevated Platform Temperatures
- 2021Laser Powder Bed Fusion Processing of Fe-Mn-Al-Ni Shape Memory Alloy—On the Effect of Elevated Platform Temperaturescitations
- 2021Development and characterization of a metastable Al-Mn-Ce alloy produced by laser powder bed fusion
- 2020Processing a biocompatible Ti-35Nb-7Zr-5Ta alloy by selective laser meltingcitations
- 2019Influence of substrate plate heating on the properties of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy ; Einfluss einer Substratheizung auf die Eigenschaften einer additiv hergestellten Cu-Al-Ni-Mn Formgedächtnislegierung
- 2019Selective laser melting of Cu-based shape memory alloys
- 2018Microstructural characterization of a laser surface remelted Cu-based shape memory alloycitations
- 2018Enhancing the life cycle behaviour of Cu-Al-Ni shape memory alloy bimorph by Mn additioncitations
- 2018Laser beam melting for added value in tooling applications ; Mehrwert durch Laserstrahlschmelzen im Werkzeugbau
- 2015Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser meltingcitations
Places of action
Organizations | Location | People |
---|
document
Additive Manufacturing of Binary Ni–Ti Shape Memory Alloys Using Electron Beam Powder Bed Fusion: Functional Reversibility Through Minor Alloy Modification and Carbide Formation
Abstract
hape memory alloys (SMAs), such as Ni–Ti, are promising candidates for actuation and damping applications. Although processing of Ni–Ti bulk materials is challenging, well-established processing routes (i.e. casting, forging, wire drawing, laser cutting) enabled application in several niche applications, e.g. in the medical sector. Additive manufacturing, also referred to as 4D-printing in this case, is known to be highly interesting for the fabrication of SMAs in order to produce near-net-shaped actuators and dampers. The present study investigated the impact of electron beam powder bed fusion (PBF-EB/M) on the functional properties of C-rich Ni 50.9 Ti 49.1 alloy. The results revealed a significant loss of Ni during PBF-EB/M processing. Process microstructure property relationships are discussed in view of the applied master alloy and powder processing route, i.e. vacuum induction-melting inert gas atomization (VIGA). Relatively high amounts of TiC, being already present in the master alloy and powder feedstock, are finely dispersed in the matrix upon PBF-EB/M. This leads to a local change in the chemical composition (depletion of Ti) and a pronounced shift of the transformation temperatures. Despite the high TiC content, superelastic testing revealed a good shape recovery and, thus, a negligible degradation in both, the as-built and the heat-treated state.