People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blachowicz, Tomasz
Silesian University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Conception of magnetic memory switched by time dependant current density and current electron spin polarization
- 2023Electrospinning of Magnetite-Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalystscitations
- 2023Exchange Bias in Nanostructures: An Updatecitations
- 2022Electrospinning Nanofiber Mats with Magnetite Nanoparticles Using Various Needle-Based Techniquescitations
- 2022Investigation of Low-Cost FDM-Printed Polymers for Elevated-Temperature Applicationscitations
- 2022Investigation of the Morphological Structure of Needle-Free Electrospun Magnetic Nanofiber Matscitations
- 2021Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cellscitations
- 2021Energies / Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cellscitations
- 2019Increased Mechanical Properties of Carbon Nanofiber Mats for Possible Medical Applications
- 2019Electrospun Nanofiber Mats with Embedded Non-Sintered TiO2 for Dye-Sensitized Solar Cells (DSSCs)citations
Places of action
Organizations | Location | People |
---|
document
Increased Mechanical Properties of Carbon Nanofiber Mats for Possible Medical Applications
Abstract
Carbon fibers belong to the materials of high interest in medical application due to their good mechanical properties and because they are chemically inert at room temperature. Carbon nanofiber mats, which can be produced by electrospinning diverse precursor polymers, followed by thermal stabilization and carbonization, are under investigation as possible substrates for cell growth, especially for possible 3D cell growth applications in tissue engineering. However, such carbon nanofiber mats may be too brittle to serve as a reliable substrate. Here we report on a simple method of creating highly robust carbon nanofiber mats by using electrospun polyacrylonitrile/ZnO nanofiber mats as substrates. We show that the ZnO-blended polyacrylonitrile (PAN) nanofiber mats have significantly increased fiber diameters, resulting in enhanced mechanical properties and thus supporting tissue engineering applications.