People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baker, Mark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Short-Time Magnetron Sputtering for the Development of Carbon–Palladium Nanocomposites
- 2023Improved thermolytic dehydrogenation of LiBH4 nanoconfined in few-layer graphene with different functionalitiescitations
- 2021Design Aspects of Doped CeO2 for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approach
- 2020Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphenecitations
- 2018The effect of Ni addition onto a Cu-based ternary support on the H₂ production over glycerol steam reforming reactioncitations
- 2017Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVDcitations
- 2017A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation datacitations
- 2017Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless depositioncitations
- 2017Dicarboxylic acids analyzed by time-of-flight secondary ion mass spectrometry (Introduction to parts 0 to VI)
- 2015Influence of CdCl2 activation treatment on ultra-thin Cd1−xZnxS/CdTe solar cellscitations
Places of action
Organizations | Location | People |
---|
document
Design Aspects of Doped CeO2 for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approach
Abstract
CO elimination through oxidation over highly active and cost-effective catalysts is a way forward for many processes of industrial and environmental importance. In this study, doped CeO2 with transition metals (TM = Cu, Co, Mn, Fe, Ni, Zr, and Zn) at a level of 20 at. % was tested for CO oxidation. The oxides were prepared using microwave-assisted sol–gel synthesis to improve catalyst's performance for the reaction of interest. The effect of heteroatoms on the physicochemical properties (structure, morphology, porosity, and reducibility) of the binary oxides M–Ce–O was meticulously investigated and correlated to their CO oxidation activity. It was found that the catalytic activity (per gram basis or TOF, s–1) follows the order Cu–Ce–O > Ce–Co–O > Ni–Ce–O > Mn–Ce–O > Fe–Ce–O > Ce–Zn–O > CeO2. Participation of mobile lattice oxygen species in the CO/O2 reaction does occur, the extent of which is heteroatom-dependent. For that, state-of-the-art transient isotopic 18O-labeled experiments involving 16O/18O exchange followed by step-gas CO/Ar or CO/O2/Ar switches were used to quantify the contribution of lattice oxygen to the reaction. SSITKA-DRIFTS studies probed the formation of carbonates while validating the Mars–van Krevelen (MvK) mechanism. Scanning transmission electron microscopy-high-angle annular dark field imaging coupled with energy-dispersive spectroscopy proved that the elemental composition of dopants in the individual nanoparticle of ceria is less than their composition at a larger scale, allowing the assessment of the doping efficacy. Despite the similar structural features of the catalysts, a clear difference in the Olattice mobility was also found as well as its participation (as expressed with the α descriptor) in the reaction, following the order αCu > αCo> αMn > αZn. Kinetic studies showed that it is rather the pre-exponential (entropic) factor and not the lowering of activation energy that justifies the order of activity of the solids. DFT calculations showed that the adsorption of CO on the Cu-doped CeO2 surface is more favorable (−16.63 eV), followed by Co, Mn, Zn (−14.46, −4.90, and −4.24 eV, respectively), and pure CeO2 (−0.63 eV). Also, copper compensates almost three times more charge (0.37e−) compared to Co and Mn, ca. 0.13e− and 0.10e−, respectively, corroborating for its tendency to be reduced. Surface analysis (X-ray photoelectron spectroscopy), apart from the oxidation state of the elements,...