People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, Lei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023An analysis of rotationally moulded sandwich structure’s repeated impact properties
- 2023Fusion of Ni Plating on CP-Titanium by Electron Beam Single-Track Scanning: Toward a New Approach for Fabricating TiNi Self-Healing Shape Memory Coating
- 2022Green synthesis of Ag/Fe3O4 nanoparticles using Mentha longifolia flower extract: evaluation of its antioxidant and anti-lung cancer effects
- 2022An atomistic simulation study of rapid solidification kinetics and crystal defects in dilute Al–Cu alloyscitations
- 2022Multiscale analysis of crystalline defect formation in rapid solidification of pure aluminium and aluminium–copper alloyscitations
- 2022Reprocessed materials used in rotationally moulded sandwich structures for enhancing environmental sustainability: low-velocity impact and flexure-after-impact responsescitations
- 2022Multiscale analysis of crystal defect formation in rapid solidification of pure aluminium and aluminium-copper alloys
- 2022Mechanically Flexible Thermoelectric Hybrid Thin Films by Introduction of PEDOT:PSS in Nanoporous Ca3Co4O9citations
- 2021On the use of limestone calcined clay cement (LC<sup>3</sup>) in high-strength strain-hardening cement-based composites (HS-SHCC)citations
- 2021Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to COcitations
- 2021Growth and optical properties of CaxCoO2 thin filmscitations
- 2021Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration.citations
- 2020The role of zinc in metakaolin-based geopolymerscitations
- 2020Unconventional valley-dependent optical selection rules and landau level mixing in bilayer graphenecitations
- 2019Magic continuum in twisted bilayer WSe2
- 2019An investigation of low velocity impact properties of rotationally molded skin–foam–skin sandwich structurecitations
- 2018Fracture toughness of rotationally molded polyethylene and polypropylenecitations
- 2016Nonlinear Generation of Vector Beams from AlGaAs Nanoantennascitations
- 2016Electron optics with p-n junctions in ballistic graphenecitations
- 2014Charge Control And Wettability Alteration At Solid-liquid Interfacescitations
- 2011A Common Genetic Variant in the 3′-UTR of Vacuolar H <sup>+</sup> -ATPase <i>ATP6V0A1</i> Creates a Micro-RNA Motif to Alter Chromogranin A Processing and Hypertension Riskcitations
- 2008Heritability and Genome-Wide Linkage in US and Australian Twins Identify Novel Genomic Regions Controlling Chromogranin Acitations
- 2007Polysulfide networks. in Situ formation and characterization of the elastomeric behaviorcitations
Places of action
Organizations | Location | People |
---|
document
Green synthesis of Ag/Fe3O4 nanoparticles using Mentha longifolia flower extract: evaluation of its antioxidant and anti-lung cancer effects
Abstract
Herein, a bio-inspired synthetic method for Ag NP adorned biofunctionalized magnetic nanocomposite has been demonstrated. In the procedure, Mentha longifolia flower extract was employed as a template for the green reduction of immobilized Ag ions to corresponding NPs and subsequent stabilization. The phytochemical modification also facilitated the Fe3O4 NPs to protect from self-aggregation. The as-synthesized Ag/Fe3O4 nanocomposite material was characterized by SEM, TEM, EDX, elemental mapping, VSM, XRD and ICP-OES methods. Towards the biological application, the material was first explored in the anti-oxidant study following DPPH assay and it exhibited a significant radical scavenging capacity. The application of Ag/Fe3O4 nanocomposite was further progressed in the anticancer study against standard human lung cancer cell lines (A549 and H358). Cytotoxicity of the material against the cell lines were determined in terms of % cell viability following MTT method and was found to decrease with increase in the material load.