Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leiderman, Ricardo

  • Google
  • 3
  • 8
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Computing Effective Permeability of Porous Media with FEM and Micro-CT: An Educational Approachcitations
  • 2018Estimating the Effective Elastic Parameters of Nodular Cast Iron from Micro-Tomographic Imaging and Multiscale Finite Elements: Comparison between Numerical and Experimental Results14citations
  • 2018Determination of the effective elastic modulus for nodular cast iron using the Boundary element method4citations

Places of action

Chart of shared publication
Da Silva Vianna, Rafael
1 / 1 shared
Cunha, Alexsander M.
1 / 1 shared
Azeredo, Rodrigo Bagueira De Vasconcellos
1 / 1 shared
Pereira, Andre
1 / 1 shared
Costa, Marcio
1 / 3 shared
Pardal, Juan
1 / 1 shared
Pereira, André
1 / 7 shared
Betancur, Adrián
1 / 1 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Da Silva Vianna, Rafael
  • Cunha, Alexsander M.
  • Azeredo, Rodrigo Bagueira De Vasconcellos
  • Pereira, Andre
  • Costa, Marcio
  • Pardal, Juan
  • Pereira, André
  • Betancur, Adrián
OrganizationsLocationPeople

document

Computing Effective Permeability of Porous Media with FEM and Micro-CT: An Educational Approach

  • Leiderman, Ricardo
  • Da Silva Vianna, Rafael
  • Cunha, Alexsander M.
  • Azeredo, Rodrigo Bagueira De Vasconcellos
Abstract

Permeability is a parameter that measures the resistance that fluid faces when flowing through a porous medium. Usually, this parameter is determined in routine laboratory tests by applying Darcy's law. Those tests can be complex and time-demanding, and they do not offer a deep understanding of the material internal microstructure. Currently, with the development of new computational technologies, it is possible to simulate fluid flow experiments in computational labs. Determining permeability with this strategy implies solving a homogenization problem, where the determination of the macro parameter relies on the simulation of a fluid flowing through channels created by connected pores present in the material's internal microstructure. This is a powerful example of the application of fluid mechanics to solve important industrial problems (e.g., material characterization), in which the students can learn basic concepts of fluid flow while practicing the implementation of computer simulations. In addition, it gives the students a concrete opportunity to work with a problem that associates two different scales. In this work, we present an educational code to compute absolute permeability of heterogeneous materials. The program simulates a Stokes flow in the porous media modeled with periodic boundary conditions using finite elements. Lastly, the permeability of a real sample of sandstone, modeled by microcomputed tomography (micro-CT), is obtained.

Topics
  • porous
  • impedance spectroscopy
  • microstructure
  • pore
  • experiment
  • simulation
  • tomography
  • permeability
  • homogenization