People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nafees, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2018Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method
- 2017Towards efficient and cost-effective inverted hybrid organic solar cells using inorganic semiconductor in the active layer
- 2012Effect of doping concentration on absorbance, structural, and magnetic properties of cobalt-doped ZnO nano-crystallites
- 2012Synthesis of ZnO/Al:ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping
- 2011The novel and economical way to synthesize CuS nanomaterial of different morphologies by aqueous medium employing microwaves irradiation
Places of action
Organizations | Location | People |
---|
document
Effect of doping concentration on absorbance, structural, and magnetic properties of cobalt-doped ZnO nano-crystallites
Abstract
ontrolled conduction of magnetic spins is desired for data processing in modern spintronic devices. Transition metal-doped ZnO is a potential candidate for this purpose. We studied the effects of cobalt doping on structural, absorbance, and magnetic properties of ZnO nano-particles. Different compositions (Zn 0.99 Co 0.1 O, Zn 0.97 Co 0.3 O, and Zn 0.95 Co 0.5 O) of cobalt-doped ZnO were fabricated using metallic chlorides by co-precipitation method. XRD revealed standard ZnO wurtzite crystal structure without lattice distortion due to impurities but showed presence of additional phases at higher doping ratios. Fourier transformed infrared spectroscopy also confirmed the standard ZnO profiles at lower doping ratios but additional phases at higher doping. Vibrating sample magnetometer showed soft ferromagnetic behavior for low impurity samples and harder ferromagnetic behavior for higher doping at room temperature. A simultaneous differential scanning calorimetry/thermo gravimetric analysis was performed to study the phase variations during crystallization.