People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ikram, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024A review on the design of nanostructure-based materials for photoelectrochemical hydrogen generation from wastewater: Bibliometric analysis, mechanisms, prospective, and challenges
- 2023Graphene oxide/polyvinylpyrrolidone-doped MoO3 nanocomposites used for dye degradation and their antibacterial activity: a molecular docking analysis
- 2021Photocatalytic, Bactericidal and Molecular Docking Analysis of Annealed Tin Oxide Nanostructures
- 2021Green synthesis of antimicrobial silver nanoparticles with Brassicaceae seedscitations
- 2020Comparative Study of Selenides and Tellurides of Transition Metals (Nb and Ta) with Respect to its Catalytic, Antimicrobial, and Molecular Docking Performance
- 2020Application of Chemically Exfoliated Boron Nitride Nanosheets Doped with Co to Remove Organic Pollutants Rapidly from Textile Water
- 2020Application of Chemically Exfoliated Boron Nitride Nanosheets Doped with Co to Remove Organic Pollutants Rapidly from Textile Watercitations
- 2018Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method
- 2017Towards efficient and cost-effective inverted hybrid organic solar cells using inorganic semiconductor in the active layer
Places of action
Organizations | Location | People |
---|
document
Towards efficient and cost-effective inverted hybrid organic solar cells using inorganic semiconductor in the active layer
Abstract
The article investigates the effects of NiO (p-type) and TiO2 (n-type) nanoparticles (NPs) on the performance of poly(3-hexylthiophene) (P3HT) and (phenyl-C61-butyric acid methylester) (PCBM) based devices with an inverse geometry. Various weight ratios of these nanoparticles were mixed in the polymer solution using 1,2-dichlorobenzene as solvent. An optimal amount of NPs-doped active layer exhibited higher power conversion efficiency (PCE) of 3.85% as compared to the reference cell, which exhibited an efficiency of 3.40% under white light illumination intensity of 100 mW/cm2. Enhanced PCE originates from increased film roughness and light harvesting due to increased absorption range upon mixing an optimal amount of NPs in the organic-based active layer. Further addition of NiO and TiO2 concentration relative to PCBM resulted in significant agglomeration of nanoparticles leading to degraded device parameters.