People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Benjeddou, Omrane
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024A comprehensive study on the impact of human hair fiber and millet husk ash on concrete properties: response surface modeling and optimization
- 2024Performance-based engineering: formulating sustainable concrete with sawdust and steel fiber for superior mechanical propertiescitations
- 2023Optimization of Fresh and Mechanical Characteristics of Carbon Fiber-Reinforced Concrete Composites Using Response Surface Techniquecitations
- 2023Effects of Jute Fiber on Fresh and Hardened Characteristics of Concrete with Environmental Assessmentcitations
- 2023Effect of Processing Parameters on Wear Properties of Hybrid AA1050/Al2O3/TiO2 Compositescitations
- 2022Workability, Strength, Modulus of Elasticity, and Permeability Feature of Wheat Straw Ash-Incorporated Hydraulic Cement Concretecitations
- 2019Effects of Incorporation of Marble Powder Obtained by Recycling Waste Sludge and Limestone Powder on Rheology, Compressive Strength, and Durability of Self-Compacting Concretecitations
- 2018Study of the Effects of Marble Powder Amount on the Self-Compacting Concretes Properties by Microstructure Analysis on Cement-Marble Powder Pastes
Places of action
Organizations | Location | People |
---|
document
Effects of Incorporation of Marble Powder Obtained by Recycling Waste Sludge and Limestone Powder on Rheology, Compressive Strength, and Durability of Self-Compacting Concrete
Abstract
Marble has been commonly used as a building material since ancient times. The disposal of waste materials from the marble industry, consisting of sludge that is composed of powder mixed with water, is one of the current worldwide environmental problems. This experimental study aims to valorize marble powder, which is achieved by grinding the sludge as filler added to the cementitious matrix of self-compacting concrete (SCC). The main purpose of this work is to evaluate the marble filler effects on the rheology in the fresh state and on the hardened properties of SCCs compared to those of limestone filler. To this end, two SCCs, SCCM and SCCL, manufactured using marble powder and limestone filler, respectively, were prepared and tested. The fresh properties of the two SCCs’ mixtures were determined by slump flow, L-box, V-funnel, sieve stability, bulk density, and air content. Tests on hardened SCCs included compressive strength, homogeneity, and quality in terms of ultrasonic pulse velocity and durability against carbonation and water penetration. In addition, scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to analyze the specimens.