Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Anovitz, Lawrence

  • Google
  • 2
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Film Breakdown and Nano-Porous Mg(OH)2Formation from Corrosion of Magnesium Alloys in Salt Solutionscitations
  • 2014Tracer Film Growth Study of Hydrogen and Oxygen from the Corrosion of Magnesium in Watercitations

Places of action

Chart of shared publication
Elsentriecy, Hassan H.
2 / 2 shared
Song, Guang-Ling
1 / 2 shared
Brady, Michael
2 / 2 shared
Unocic, K. A.
1 / 2 shared
Thomson, J. A. K.
1 / 1 shared
Davis, Bruce
2 / 3 shared
Song, Guang Ling
1 / 2 shared
Fayek, Mostafa
1 / 1 shared
Chart of publication period
2015
2014

Co-Authors (by relevance)

  • Elsentriecy, Hassan H.
  • Song, Guang-Ling
  • Brady, Michael
  • Unocic, K. A.
  • Thomson, J. A. K.
  • Davis, Bruce
  • Song, Guang Ling
  • Fayek, Mostafa
OrganizationsLocationPeople

document

Tracer Film Growth Study of Hydrogen and Oxygen from the Corrosion of Magnesium in Water

  • Elsentriecy, Hassan H.
  • Brady, Michael
  • Song, Guang Ling
  • Davis, Bruce
  • Anovitz, Lawrence
  • Fayek, Mostafa
Abstract

An isotopic tracer study of the film growth mechanism for pure magnesium, AZ31B, and ZE10A (Elektron 717, E717) magnesium alloys in water at room temperature was performed. A series of individual and sequential exposures were conducted in both H218O and D216O, with isotopic tracer profiles obtained using secondary ion mass spectrometry (SIMS). The water-formed films consisted primarily of partially hydrated MgO. The SIMS sputter depth profiles indicate that H and D penetrated throughout the film and into the underlying metal, particularly for the Zr- and Nd-containing E717 alloy. Film growth for the UHP Mg involved aspects of both metal outward diffusion and oxygen/hydrogen inward diffusion. In contrast, the film on the Al-containing AZ31B alloy grew primarily by inward oxygen and inward hydrogen diffusion. The 18O and D profiles for the film formed on E717 were the most complex, with the 18O data most consistent with inward lattice oxygen diffusion, but the D data suggests inward, short-circuit diffusion through the film. It is speculated that preferential inward short circuit hydrogen transport may have been aided by the presence of nano Zn2Zr3 particles throughout the E717 film. Such hydrogen penetration may have implications from both a corrosion resistance and hydrogen storage perspective.

Topics
  • impedance spectroscopy
  • corrosion
  • Oxygen
  • Magnesium
  • magnesium alloy
  • Magnesium
  • Hydrogen
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry
  • Al-containing