Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arlic, Uwe

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Damping of the Woodwind Instrument Reed Material Arundo donax Lcitations

Places of action

Chart of shared publication
Weidenfeller, Bernd
1 / 2 shared
Lambri, Osvaldo
1 / 1 shared
Bonifacich, Federico Guillermo
1 / 1 shared
Gargicevich, Damián
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Weidenfeller, Bernd
  • Lambri, Osvaldo
  • Bonifacich, Federico Guillermo
  • Gargicevich, Damián
OrganizationsLocationPeople

document

Damping of the Woodwind Instrument Reed Material Arundo donax L

  • Weidenfeller, Bernd
  • Lambri, Osvaldo
  • Bonifacich, Federico Guillermo
  • Arlic, Uwe
  • Gargicevich, Damián
Abstract

The viscoelastic properties (E', G', tanΦ, δ) of Arundo donax (AD) and a polypropylene-beech fiber composite (PPC) were measured from RT to 580K for various frequencies and strains. E' of AD varies between 5250-6250MPa depending on ageing at RT while E'(RT)=2250MPa of PPC is signifcantly lower. E' of the AD is higher than E' of PPC in the whole investigated temperature range with the exception of AD after a heat treatment up to 575K. Damping spectra exhibit peaks around 340K (Q=234kJ/mol) and 415K for the PPC related to relaxations in the crystalline part of polypropylene and the relaxation at melting temperature. For AD damping peaks were found at 350K (Q=320kJ/mol) related to the glass-rubber transition of lignin, at 420K due to a reorganization in the amorphous phase of lignin, at 480K related to micro-Brownian motions in the non-crystalline region of cell-wall polymers and reduction of the crystallinity of cellulose, and at 570K due to the polymeric compounds of wood and/or a decomposition of lignin. The course of E' and tanΦ of AD and PPC is comparable from 20-200Hz, whereas tanΦ of AD is lower than tanΦ of PPC while E' of AD is higher than E' of PPC.

Topics
  • impedance spectroscopy
  • compound
  • amorphous
  • phase
  • glass
  • glass
  • composite
  • lignin
  • aging
  • wood
  • cellulose
  • rubber
  • crystallinity
  • decomposition
  • melting temperature